精英家教网 > 高中数学 > 题目详情

【题目】已知线段AB的端点B的坐标是(42),端点A在圆C:(x+22+y216上运动.

1)求线段AB的中点的轨迹方程H

2)判断(1)中轨迹H与圆C的位置关系.

3)过点P32)作两条相互垂直的直线MNEF,分别交(1)中轨迹HMNEF,求四边形MNFE面积的最大值

【答案】1)(x12+y124.(2)两圆相交.(3

【解析】

(1),,中点,根据已知关系,由相关点法即可得出圆的方程;

(2)比较圆心距与两圆半径的关系,得出两圆位置关系;

(3)根据圆的完美性,本题把圆和点同时向左和向下平移一个单位后,就可以把问题转换为与圆的问题求解.

(1)A(x0,y0),中点H(x,y),

,,

代入圆C:(x+2)2+y2=16,

化简得圆H:(x1)2+(y1)2=4;

(2)两圆圆心分别为C(2,0),H(1,1),半径分别为,

∴圆心距d,

r1r2<d<r1+r2

∴两圆相交;

(3)根据圆的完美性,本题把圆和点同时向左和向下平移一个单位后,

就可以把问题转换为(2,1)与圆x2+y2=4的问题,

为方便,点名均不变,P(2,1),H(0,0),

记圆心H到直线MN,EF的距离分别为d1,d2,

,r=2,

,

,

,

,

所以四边形MNFE的面积为

,

又由可以得|x1x2+y1y2|,

所以,

当且仅当d1=d2时取等号,

即四边形MNFE的面积最大为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.

(Ⅰ)求至少回答对一个问题的概率;

(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;

(Ⅲ)求这位挑战者闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;

②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;

③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;

④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.

其中正确的结论是( )

A. ①②B. ①④

C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22依此类推.求满足如下条件的最小整数NN>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是( )

A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,点在椭圆上,且的周长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA'B'C'AC2BC4,∠ACB120°,∠ACC'90°,且平面AB'C⊥平面ABC,二面角A'ACB'30°EF分别为A'CB'C'的中点.

1)求证:EF∥平面AB'C

2)求B'到平面ABC的距离;

3)求二面角ABB'C'的余弦值.

查看答案和解析>>

同步练习册答案