精英家教网 > 高中数学 > 题目详情

【题目】中,角所对的边分别为.向量,且

(1)若,求角的值;

(2)求角的最大值.

【答案】(1);(2).

【解析】

1)利用向量平行得到,再利用正弦定理化简,可求得,从而求得;(2)方法一:利用正弦定理将边都化成角的关系,化简求得,再利用,结合基本不等式求得的最值,从而得到的最大值;方法二:利用余弦定理将角化成边的关系,再利用和基本不等式得到的最小值,从而得到的最大值.

(1)因为,且

所以,即

由正弦定理,得……①

所以

整理,得……②

代入上式得

,所以

(2)方法一:由①式,因为,所以

②式两边同时除以,得

当且仅当,即时取等号

,所以的最大值为

方法二:由(1)知,

由余弦定理

代入上式并化简得

所以

当且仅当,即时取等号

,所以的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从分别写有123455张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:椭圆的焦点在轴上,左焦点与短轴两顶点围成面积为的等腰直角三角形,直线与椭圆交于不同两点都在轴上方),且.

1)求椭圆的标准方程;

2)当为椭圆与轴正半轴的交点时,求直线的方程;

3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种大型商品,两地都有出售,且价格相同,现地的居民从两地之一购得商品后回运的运费是:地每公里的运费是地运费的倍,已知两地相距,居民选择地购买这种商品的标准是:包括运费和价格的总费用较低.

1)求地的居民选择地或地购物总费用相等时,点所在曲线的形状;

2)指出上述曲线内、曲线外的居民应如何选择购货地点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;

(2)当m>0,k = 0时,求证:函数有两个不同的零点;

(3)若,记函数,若,使,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆经过坐标原点和点,且与直线相切, 从圆外一点向该圆引切线为切点,

)求圆的方程;

)已知点,且, 试判断点是否总在某一定直线上,若是,求出的方程;若不是,请说明理由;

)若()中直线轴的交点为,点是直线上两动点,且以为直径的圆过点,圆是否过定点?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关平面向量分解定理的四个命题:

1)一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;

2)一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;

3)平面向量的基向量可能互相垂直;

4)一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.

其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2, 3, 4的红球,2个编号为AB的黑球,现从中任取2个小球.;

(1)求所取2个小球都是红球的概率;

(2)求所取的2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且成等比数列,成等差数列.

1)行列式,且,求证:数列是等差数列;

2)在(1)的条件下,若不是常数列,是等比数列,

①求的通项公式;

②设是正整数,若存在正整数,使得成等差数列,求的最小值.

查看答案和解析>>

同步练习册答案