(本小题满分12分)
已知是定义在上的奇函数,当时,。
(1)求及的值;
(2)求的解析式并画出简图;
(3)写出的单调区间(不用证明)。
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知函数,
(1)若在上的最大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
二次函数.
(1)若对任意有恒成立,求实数的取值范围;
(2)讨论函数在区间上的单调性;
(3)若对任意的,有恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分).某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.
(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com