精英家教网 > 高中数学 > 题目详情
已知双曲线=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(    )

A.(1,2]                           B.(1,2)

C.[2,+∞)                      D.(2,+∞)

思路分析:过点F且倾斜角为60°的直线L与双曲线的右支有且只有一个交点的充要条件是:直线L与双曲线的渐近线平行(即一条渐近线的斜率=tan60°),或直线L的斜率小于这条渐近线的斜率,此时直线L与双曲线的左、右两支各有一个交点,即tan60°<.综合,得tan60°=所以其离心率e==2.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的动弦BC平行于虚轴,MN是双曲线的左、右顶点,

(1)求直线MBCN的交点P的轨迹方程;

(2)若P(x1,y1),B(x2,y2),求证:ax1x2的比例中项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的离心率e∈[,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则θ的取值范围是(    )

A.[]                    B.[

C.[]                  D.[,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,若过F且倾斜角为60°的直线与双曲线有且只有一个交点,则双曲线的离心率是(    )

A.            B.           C.4              D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=k,则双曲线方程为(    )

A.=1                              B.=1

C.=1                               D.=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°        B.45°        C.60°          D.90°

查看答案和解析>>

同步练习册答案