精英家教网 > 高中数学 > 题目详情

【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.

年份

2012

2013

2014

2015

2016

年份代码

1

2

3

4

5

机动车保有量(万辆)

169

181

196

215

230

(1)在图所给的坐标系中作出数据对应的散点图;

(2)建立机动车保有量关于年份代码的回归方程;

(3)按照当前的变化趋势,预测2017年该市机动车保有量.

附注:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

.

【答案】(1)答案见解析;(2) .(3)245万辆.

【解析】试题分析:

(1)结合所给的数据绘制散点图即可;

(2)结合所给的数据计算可得回归方程为.

(3)结合线性回归方程的预测作用可得2017年该市机动车保有量是245万辆.

试题解析:

1)数据对应的散点图如图所示.

2

所以回归直线方程为.

3)代入2017年的年份代码,得,所以按照当前的变化趋势,2017年该市机动车保有量为245万辆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

I)若花店一天购进枝玫瑰花,写出当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.

II)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量

频数

天记录的各需求量的频率作为各需求量发生的概率.

i)若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列,数学期望.

ii)若花店计划一天购进枝或枝玫瑰花,你认为应购进枝还是枝?只写结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 中,内角的对边分别为,已知,且 .

(1)求的面积.

(2)已知等差数列的公差不为零,若,且成等比数列,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽率,得到如下表格:

(1)从这5天中任选2天,记发芽的种子数分别为求事件“均不小于25” 的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列为递增的等比数列,

数列满足

(Ⅰ)求数列的通项公式;(Ⅱ)求证: 是等差数列;

(Ⅲ)设数列满足,且数列的前项和,并求使得对任意都成立的正整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:

服用A药的20位患者日平均增加的睡眠时间:

0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5

2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4

服用B药的20位患者日平均增加的睡眠时间:

3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4

1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5

(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?

(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,值域为,即,若,则称上封闭.

1)分别判断函数 上是否封闭,说明理由;

2)函数的定义域为,且存在反函数,若函数上封闭,且函数上也封闭,求实数的取值范围;

3)已知函数的定义域为,对任意,若,有恒成立,则称上是单射,已知函数上封闭且单射,并且满足 ,其中),,证明:存在的真子集,

,使得在所有)上封闭.

查看答案和解析>>

同步练习册答案