精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为,其中,且

1)求证:,并由推导的值;

2)若数列共有项,前项的和为,其后的项的和为,再其后的项的和为,求的比值.

3)若数列的前项,前项、前项的和分别为,试用含字母的式子来表示(即,且不含字母

【答案】1)证明见解析;(2;(3

【解析】

1)根据题意可知,则由可证,再根据列出不等式组求解即可。

2)根据等差数列通项公式和前项和公式,可得,得出的关系,代入求解即可。

3)根据等比数列通项公式和前项和公式得出,进而求解三者关系即可。

1)已知

可知,因此

可得:,且

因此可得不等式组:

又因为

因此

2)数列的通项为,前项和

可得

可得

因此

3)数列的通项为

因此

所以

因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱的侧棱长为,底面是边长的矩形,的中点,

1)求证:平面

2)求异面直线所成的角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是棱长为2的正方体的棱的中点.如图,以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系.

1)求向量的数量积;

2)若点分别是线段与线段上的点,问是否存在直线平面?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于双曲线,若点Px0y0)满足,则称P的外部,若点Px0y0)满足>1,则称在的内部;

1)若直线y=kx+1上的点都在C11的外部,求k的取值范围;

2)若Cab过点(21),圆x2+y2=r2r0)在Cab内部及Cab上的点构成的圆弧长等于该圆周长的一半,求br满足的关系式及r的取值范围;

3)若曲线|xy|=mx2+1m0)上的点都在Cab的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程为常数)有解,则解得个数一定是偶数;(4是偶函数且有最小值.其中假命题的序号是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:1(a>b>0)的左右焦点分别为F1F2,离心率为A为椭圆C上一点,且AF2F1F2,且|AF2|.

1)求椭圆C的方程;

2)设椭圆C的左右顶点为A1A2,过A1A2分别作x轴的垂线 l1l2,椭圆C的一条切线l:y=kx+m(k≠0)l1l2交于MN两点,试探究是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小正周期并求出单调递增区间;

(2)在中,角A,B,C的对边分别是a,b,c,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的空间几何体中,是等腰直角三角形,,四边形为直角梯形,中点.

)证明:平面

)若,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案