【题目】已知,.
(1)当时,求函数图象在处的切线方程;
(2)若对任意,不等式恒成立,求的取值范围;
(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.
【答案】(1);(2);(3).
【解析】
(1)利用导数的几何意义求得函数图象在处的切线方程为.(2)
先求导得,再对a分类讨论得到的取值范围.(3对a分类讨论,结合极大值小于极小值求出的取值范围.
解:(1)当时,,,则.
又因为,所以函数图象在处的切线方程为,
即.
(2)因为
所以 ,
且.因为,所以.
①当时,即,
因为在区间上恒成立,所以在上单调递增.
当时,,
所以满足条件.
②当时,即时,
由,得,
当时,,则在上单调递减,
所以时,,这与时,恒成立矛盾.
所以不满足条件.
综上,的取值范围为.
(3)①当时,
因为在区间上恒成立,所以在上单调递增,
所以不存在极值,所以不满足条件.
②当时,,所以函数的定义域为,
由,得,
列表如下:
↗ | 极大值 | ↘ | 极小值 | ↗ |
由于在是单调减函数,此时极大值大于极小值,不合题意,
所以不满足条件.
③当时,由,得.
列表如下:
↘ | 极小值 | ↗ |
此时仅存在极小值,不合题意,
所以不满足条件.
④当时,函数的定义域为,
且,.
列表如下:
↗ | 极大值 | ↘ | ↘ | 极小值 | ↗ |
所以存在极大值和极小值,
此时
因为,
所以,,,,
所以,即,
所以满足条件.
综上,所以的取值范围为.
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形,平面,,,以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面;
(2)求直线与平面所成的角的大小;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中且,.
(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;
(2)当m>0,k = 0时,求证:函数有两个不同的零点;
(3)若,记函数,若,使,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关平面向量分解定理的四个命题:
(1)一个平面内有且只有一对不平行的向量可作为表示该平面所有向量的基;
(2)一个平面内有无数多对不平行向量可作为表示该平面内所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一个平面内任一非零向量都可唯一地表示成该平面内三个互不平行向量的线性组合.
其中正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,为直角,,,与相交于点,,.
(1)试用、表示向量;
(2)在线段上取一点,在线段上取一点,使得直线过,设,,求的值;
(3)若,过作线段,使得为的中点,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2, 3, 4的红球,2个编号为A、B的黑球,现从中任取2个小球.;
(1)求所取2个小球都是红球的概率;
(2)求所取的2个小球颜色不相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一个正整数,则实数k的取值范围为 ( )
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com