精英家教网 > 高中数学 > 题目详情

【题目】a,b为正数,给出下列命题:
①若a2﹣b2=1,则a﹣b<1;
②若 =1,则a﹣b<1;
③ea﹣eb=1,则a﹣b<1;
④若lna﹣lnb=1,则a﹣b<1.
期中真命题的有

【答案】①③
【解析】解:①中,a,b中至少有一个大于等于1,则a+b>1,
由a2﹣b2=(a+b)(a﹣b)=1,
所以a﹣b<1,故①正确.
②中 = =1,只需a﹣b=ab即可,
取a=2,b= 满足上式但a﹣b= >1,故②错;
③构造函数y=x﹣ex , x>0,y′=1﹣ex<0,函数单调递减,
∵ea﹣eb=1,∴a>b,
∴a﹣ea<b﹣eb
∴a﹣b<ea﹣eb=1,
故③正确;
④若lna﹣lnb=1,则a=e,b=1,a﹣b=e﹣1>1,故④不正确.
故答案为:①③.
不正确的结论,列举反例,正确的结论,进行严密的证明,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆上一点与椭圆右焦点的连线垂直于x轴,直线l:y=kx+m与椭圆C相交于A,B两点(均不在坐标轴上).

(1)求椭圆C的标准方程;

(2)设O为坐标原点,若△AOB的面积为,试判断直线OA与OB的斜率之积是否为定值?若是请求出,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1底面ABC,则三棱锥B1-ABC1的体积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的两个焦点F1 , F2和上下两个顶点B1 , B2是一个边长为2且∠F1B1F2为60°的菱形的四个顶点.
(1)求椭圆C的方程;
(2)过右焦点F2 , 斜率为k(k≠0)的直线与椭圆C相交于E,F两点,A为椭圆的右顶点,直线AE,AF分别交直线x=3于点M,N,线段MN的中点为P,记直线PF2的斜率为k′.求证:kk′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=lncos(2x+ )的一个单调递减区间是(
A.(﹣ ,﹣
B.(﹣ ,﹣
C.(﹣
D.(﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同直线的极坐标方程为,曲线C的参数方程为为参数,设直线l与曲线C交于AB两点.

写出直线的普通方程与曲线C的直角坐标方程;

已知点P在曲线C上运动,求点P到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ 有两个零点x1、x2
(1)求k的取值范围;
(2)求证:x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8

(1)在表格中作出这些数据的频率分布直方图;

(2)求这些数据的众数和中位数

(3)估计这种产品质量指标的平均数(同一组中的数据用该组区间的中点值作代表);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围

查看答案和解析>>

同步练习册答案