精英家教网 > 高中数学 > 题目详情
如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于a的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB.(结果保留根式形式)

【答案】分析:在△BCD中利用正弦定理利用∠DBC和a求得BC的值,进而在△ABC中利用BC和a,根据余弦定理求得AB.
解答:解:在△BCD中,∠DBC=60°,=
∴BC=a
在△ABC中,∠BCA=135°,
AB2=+a2-2×a×a×cos135°=
∴AB=a.
故炮击目标的距离AB为a.
点评:本题主要考查了解三角形的实际应用.解三角形问题常用正弦定理,余弦定理,三角形面积公式等来解决,平时应注意这方面的积累.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于a的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB.(结果保留根式形式)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,我炮兵阵地位于A处,两观察所分别设于C、D,已知△ACD为边长等于a的正三角形.若目标出现于B时,测得∠CDB=45°,∠BCD=75°,则炮击目标AB的距离为
5+2
3
3
a
5+2
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB.(结果保留根式形式)

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省开封市尉氏县民开高级中学高二(上)月考数学试卷(理科)(解析版) 题型:解答题

如图,我炮兵阵地位于A处,两观察所分别设于C,D,已知△ACD为边长等于a的正三角形.当目标出现于B时,测得∠CDB=45°,∠BCD=75°,试求炮击目标的距离AB.(结果保留根式形式)

查看答案和解析>>

同步练习册答案