精英家教网 > 高中数学 > 题目详情
已知不等式ax2-bx-1≥0的解集是[-
1
2
,-
1
3
]
,则不等式x2-bx-a<0的解集是(  )
A、(2,3)
B、(-∞,2)∪(3,+∞)
C、(
1
3
1
2
D、(-∞,
1
3
)∪(
1
2
,+∞)
分析:先根据不等式ax2-bx-1≥0的解集是[-
1
2
,-
1
3
]
,判断a<0,从而求出a,b值,代入不等式x2-bx-a<0,从而求解.
解答:解:∵不等式ax2-bx-1≥0的解集是[-
1
2
,-
1
3
]

∴a<0,
∴方程ax2-bx-1=0的两个根为-
1
2
,-
1
3

-
-b
a
=-
1
2
-
1
3
-1
a
=
1
6

∴a=-6,b=5,
∴x2-bx-a<0,
∴x2-5x+6<0,
∴(x-2)(x-3)<0,
∴不等式的解集为:2<x<3.
点评:此题主要考查不等式和方程的关系,主要考查一元二次不等式的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式ax2-bx-2>0的解集为{x|1<x<2}则a+b=
-4
-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-5x+b>0的解集是{x|-3<x<-2},则不等式ax2-5x+b>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.
(1)求证:函数y=f(x)必有两个不同的零点.
(2)若函数y=f(x)的两个零点分别为m,n,求|m-n|的取值范围.
(3)是否存在这样实数的a、b、c及t,使得函数y=f(x)在[-2,1]上的值域为[-6,12].若存在,求出t的值及函数y=f(x)的解析式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx-2>0的解集为(-∞,-2)∪(3,+∞),则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+bx-3>0的解集为{x|x>1或x<-3},则不等式
b-x
x+a
>0
的解集为(  )

查看答案和解析>>

同步练习册答案