【题目】已知幂函数,且在上单调递增.
(1)求实数的值,并写出相应的函数的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)试判断是否存在正数,使函数在区间上的值域为,若存在,求出的值;若不存在,请说明理由.
【答案】(1);(2);(3).
【解析】试题分析:(1)因为在上单调递增,所以有(2-k)(1+k)>0,再结合就搞定.(2)因为在不单调,说明对称轴在上.
(3)g(x)是开口向下的二次函数,我们只需要讨论上的单调性,在内求出最大最小值,即可求解q.
试题解析:(1)由题意知,解得: .
又∴或,分别代入原函数,得.
(2)由已知得.
要使函数不单调,则,则.
(3)由已知, .
假设存在这样的正数符合题意,
则函数的图象是开口向下的抛物线,其对称轴为,因而,函数在上的最小值只能在或处取得,又,
从而必有,解得.此时, ,其对称轴,
∴在上的最大值为,符合题意.
∴存在,使函数在区间上的值域为.
科目:高中数学 来源: 题型:
【题目】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.命题“x∈R,使得x2﹣1<0”的否定是:x∈R,均有x2﹣1<0
B.命题“若x=3,则x2﹣2x﹣3=0”的否命题是:若x≠3,则x2﹣2x﹣3≠0
C.“ ”是“ ”的必要而不充分条件
D.命题“cosx=cosy,则x=y”的逆否命题是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:
(1)PA⊥底面ABCD;
(2)平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是( )
A.12
B.24
C.30
D.36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,x∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).
(1)求h(a).
(2)是否存在实数m>n>3,当h(a)的定义域为[n,m]时,值域为[n2,m2]?若存在,求出m,n的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com