精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}=(sinθ,cosθ)$,$\overrightarrow{b}$=(3,4),若$\overrightarrow{a}⊥\overrightarrow{b}$,则tanθ等于(  )
A.$-\frac{24}{7}$B.$\frac{6}{7}$C.$-\frac{24}{25}$D.$-\frac{4}{3}$

分析 由向量的垂直关系和同角三角函数的基本关系可得.

解答 解:∵向量$\overrightarrow{a}=(sinθ,cosθ)$,$\overrightarrow{b}$=(3,4),
由$\overrightarrow{a}⊥\overrightarrow{b}$可得$\overrightarrow{a}$•$\overrightarrow{b}$=3sinθ+4cosθ=0,
∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$
故选:D

点评 本题考查平面向量的数量积和垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知某几何体的三视图如图所示,其中俯视图是一个边长为2的正方形切去了四个以顶点为圆心1为半径的四分之一圆,则该几何体的表面积为8+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an},{bn}中,{an}的前n项和为Sn,点(n,Sn)在函数y=x2+2x的图象上.{bn}满足$\frac{{b}_{n+1}}{{b}_{n}}$=2,b1=2
(1)求{an},{bn}的通项公式;
(2)令Cn=an•bn,求数列Cn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和为Sn,已知a1=2,且${S_{n-1}}={a_n}(n≥2,n∈{N^*})$.
(1)求a2,a3,a4
(2)猜想{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且$|{MN}|=\frac{7}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=a-x2(1≤x≤2)与g(x)=x+1的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.$[-\frac{5}{4},+∞)$B.[1,2]C.$[-\frac{5}{4},1]$D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)在线段AB上是否存在点M,使PM与平面PDB所成角的正弦值为$\frac{{\sqrt{38}}}{19}$?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线T:y2=2px(p>0)的焦点为F,A(x0,y0)为T上异于原点的任意一点,点D为x的正半轴上的点,且有|FA|=|FD|,若x0=3时,D的横坐标为5.
(1)求T的方程;
(2)直线AF交T于另一点B,直线AD交T于另一点C,试求△ABC的面积S关于x0的函数关系式S=f(x0),并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=sin2x的图象向左平移$\frac{π}{4}$个长度单位,得到函数g(x)的图象,则g(x)的单调递增区间是(  )
A.(kπ-$\frac{π}{2}$,kπ)(k∈Z)B.(kπ,kπ+$\frac{π}{2}$)(k∈Z)C.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)D.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$)(k∈Z)

查看答案和解析>>

同步练习册答案