精英家教网 > 高中数学 > 题目详情

【题目】直角坐标平面内,每个点绕原点按逆时针方向旋转的变换所对应的矩阵为,每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为.

(I)求矩阵的逆矩阵

(Ⅱ)求曲线先在变换作用下,然后在变换作用下得到的曲线方程.

【答案】(Ⅰ);(Ⅱ).

【解析】

试题分析:(1)在直角坐标平面内,将每个点绕原点按逆时针方向旋转的变换所对应的矩阵为.所以由旋转变换得到的公式即可求得矩阵M.再根据逆矩阵求出结论.

2)将每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为,由于曲线先在变换作用下,然后在变换作用下得到的曲线方程.所以.所以在曲线上任取一点,通过NM的变换即可得到结论.

1 4

2

代入中得:

故所求的曲线方程为:7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,,的中点,的中点,

(1)求证: 平面

(2)中点,证明:平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的单调减区间为.

1)求的值及极值;

2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表为年至年某百货零售企业的线下销售额单位:万元),其中年份代码年份

年份代码

线下销售额

(1)已知具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;

(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项为1的等差数列,数列满足,且.

(1)求数列的通项公式;

(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】6本不同的书,按下列方式进行分配,其中分配种数正确的是( )

A.分给甲乙丙三人,每人各2本,有90种分法;

B.分给甲乙丙三人中,一人4本,另两人各1本,有90种分法;

C.分给甲乙每人各2本,分给丙丁每人各1本,有180种分法;

D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有2160种分法;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在六条棱长分别为233455的所有四面体中,最大的体积是多少?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面,底面是菱形, 的交点, 为棱上一点,

(1)证明:平面⊥平面

(2)若三棱锥的体积为

求证: ∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,点为左焦点,过点轴的垂线交椭圆两点,且.

(1)求椭圆的方程;

(2)若是椭圆上异于点的两点,且直线的倾斜角互补,则直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案