精英家教网 > 高中数学 > 题目详情
已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1
的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)已知直线l过点P(4,0)交抛物线于A,B两点,是否存在垂直于x轴的直线x=m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出直线x=m的方程;如果不存在,说明理由.
分析:(1)确定椭圆的几何量,求出抛物线的焦点坐标,即可得到抛物线D的方程;
(2)确定M的坐标,过M作直线x=a的垂线,垂足为E,故|EG|2=|MG|2-|ME|2,由此即可求得结论.
解答:解:(1)由题意,可设抛物线方程为y2=2px(p>0)
椭圆
x2
4
+
y2
3
=1
中a2-b2=4-3=1,得c=1,∴抛物线的焦点为(1,0),
p
2
=1,∴p=2,
∴抛物线D的方程为y2=4x;
(2)设A(x1,y1),则圆心M(
x1+4
2
y1
2
),
过M作直线x=m的垂线,垂足为E,设直线m与圆M的一个交点为G,可得:|EG|2=|MG|2-|ME|2
即|EG|2=|MA|2-|ME|2=
(x1-4)2+y12
4
-(
x1+4
2
-m)2=
1
4
y12
+
(x1-4)2-(x1+4)2
4
+m(x1+4)-m2
=(m-3)x1+4m-m2
当m=3时,|EG|2=3,此时直线m被以AP为直径的圆M所截得的弦长恒为定值2
3

因此存在直线x=3满足题意.
点评:本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查弦长的计算,解题的关键是联立方程,利用韦达定理求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆Q:
x2
4
+
y2
3
=1
的中心O,焦点与椭圆Q的右焦点重合,点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线D上的两个动点,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求抛物线D的方程及y1y2的值;
(Ⅱ)求线段AB中点轨迹E的方程;
(Ⅲ)求直线y=
1
2
x
与曲线E的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1
的中心,焦点与该椭圆的右焦点重合.
(Ⅰ)求抛物线D的方程;
(Ⅱ)已知动直线l过点P(4,0),交抛物线D于A、B两点.(i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)已知抛物线D的顶点是椭圆
x2
4
+
y2
3
=1的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线D的方程;
(2)已知动直线l过点P(4,0),交抛物线D于A、B两点,坐标原点O为PQ中点,求证:∠AQP=∠BQP;
(3)是否存在垂直于x轴的直线m被以AP为直径的圆所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届度宁夏高二上学期期末考试理科数学试卷 题型:解答题

已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点是抛物线D上的两个动点,且

   (1)求抛物线D的方程及y1y2的值;

   (2)求线段AB中点轨迹E的方程;

   (3)在曲线E上寻找一点,使得该点与直线的距离最近.

 

查看答案和解析>>

同步练习册答案