精英家教网 > 高中数学 > 题目详情
16.已知函数y=|2x-1|,x∈R,若方程|2x-1|=k有且仅有2个解,则k的取值范围是(  )
A.[0,1]B.[0,$\frac{3}{2}$]C.(0,1)D.[1,+∞)

分析 作函数y=|2x-1|与y=k的图象,方程|2x-1|=k的解的个数可化为函数y=|2x-1|与y=k的图象的交点的个数,从而解得.

解答 解:作函数y=|2x-1|与y=k的图象如下,

方程|2x-1|=k的解的个数可化为函数y=|2x-1|与y=k的图象的交点的个数,
结合图象可知,
k的取值范围是(0,1),
故选C.

点评 本题考查了数形结合的思想应用及方程与函数的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.深夜,一辆出租车涉及一起交通事故,已知该市有两家出租车公司,红色出租车公司和蓝色出租车公司,其中红色出租车公司和蓝色出租车公司分别占整个城市出租车的15%和85%.据现场目击证人说,事故现场的出租车是红色的,并对现场目击证人的辨别能力做了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大嫌疑.你觉得警察这样的认定公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,抛物线开口向下,与x轴交于原点O与点A,顶点为P,△OPA是一个面积为1的等腰直角三角形.
(1)求以此抛物线为其图象的二次函数的解析式;
(2)求此二次函数在[$\frac{1}{2}$,3]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设a为实数,f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)求a的值,使f(x)的图象关于原点对称;
(2)上述函数是否具有单调性,如果具有单调性,试求出单调区间并加以证明,如果没有单调性,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\sqrt{lg[\frac{11}{2}-9cos(x+\frac{π}{6})]}$≤1,则函数y=$\frac{1}{ta{n}^{2}x}$-2$\frac{1}{tanx}$+5的值域是[4,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ax-a2(a>0且a≠1)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知α是三角形的内角,且2sinα+cosα=1.
(1)求tanα的值;
(2)求sin2(π+α)-cos($\frac{π}{2}$+α)cos(π-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下列随机事件中,一次试验各指什么?它们各有几次试验?试验的可能结果又哪几种?
(1)一天中,从北京站开往合肥站的3列列车,全部正点到达;
(2)某人射击两次,一次中靶,一次未中靶.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={1,2,3,4,5,6,7},M={1,3,5,7},N={2,5,6,7},则M∪(∁UN)=(  )
A.{1,3,5,7}B.{1,2,4}C.{1,3,4,5,7}D.{1,3,4,5,6}

查看答案和解析>>

同步练习册答案