精英家教网 > 高中数学 > 题目详情
若函数符合下列条件:(1)f(x)的定义域与值域相同;(2)在定义域内f(x)+f(-x)=0;(3)f(x)在 (0,+∞)上为减函数,则f(x)=
1
x
1
x
(写出其中一个解析式).
分析:由于所学的基本初等函数中,反比例函数具有::(1)f(x)的定义域与值域相同;(2)在定义域内f(x)+f(-x)=0;(3)f(x)在 (0,+∞)上为减函数.
解答:解:因为若满足;(2)在定义域内f(x)+f(-x)=0;即函数为奇函数;
又要满足:(1)f(x)的定义域与值域相同;;(3)f(x)在 (0,+∞)上为减函数,
所以f(x)=
1
x

故答案为
1
x
点评:本题考查函数奇偶性的应用问题、函数单调性的判断与证明,考查数形结合思想和等价转化思想.关键要把握准函数图象的增减趋势.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
  (x>0)
是否为闭函数?并说明理由;
(3)若y=k+
x+2
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),若同时满足下列条件:
①函数y=f(x)在定义域D内是单调递增或单调递减函数;
②存在区间[a,b]⊆3D,使函数f(x)在[a,b]上的值域为[a,b],则称f(x)是D上的闭函数.
(1)求闭函数f(x)=-x3符合条件②的区间[a,b];
(2)判断函数g(x)=
3
4
x+
1
x
,在区间(0,+∞)上是否为闭函数;
(3)若函数φ(x)=k+
x+2
是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数符合下列条件:(1)f(x)的定义域与值域相同;(2)在定义域内f(x)+f(-x)=0;(3)f(x)在 (0,+∞)上为减函数,则f(x)=________(写出其中一个解析式).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数符合下列条件:(1)f(x)的定义域与值域相同;(2)在定义域内f(x)+f(-x)=0;(3)f(x)在 (0,+∞)上为减函数,则f(x)=______(写出其中一个解析式).

查看答案和解析>>

同步练习册答案