精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①不等式x2-4ax+3a2<0的解集为{x|a<x<3a};
②若函数y=f(x+1)为偶函数,则y=f(x)的图象关于x=1对称;
③若不等式|x-4|+|x-3|<a的解集为空集,则必有a≤1;
④函数y=f(x)的图象与直线x=a至多有一个交点.
其中所有正确命题的序号是
②③④
②③④
分析:①不等式x2-4ax+3a2<0的解集与a>0,a=0,a<0,有关系,即可判断出;
②若函数y=f(x+1)为偶函数,其图象关于y轴对称,把y=f(x+1)的图象项作平移一个单位可得y=f(x)的图象,即可判断出;
③由|x-4|+|x-3|≥|x-4-(x-3)|=1,若不等式|x-4|+|x-3|<a的解集为空集,即可得出a的取值范围;
④函数y=f(x)的图象与直线x=a至多有一个交点,由函数的定义即可判断出.
解答:解:①不等式x2-4ax+3a2<0的解集与a>0,a=0,a<0,有关系,不一定为{x|a<x<3a},不正确;
②若函数y=f(x+1)为偶函数,其图象关于y轴对称,把y=f(x+1)的图象项作平移一个单位可得y=f(x)的图象,因此其图象关于x=1对称,正确;
③∵|x-4|+|x-3|≥|x-4-(x-3)|=1,∴若不等式|x-4|+|x-3|<a的解集为空集,则a≤1,因此正确;
④函数y=f(x)的图象与直线x=a至多有一个交点,由函数的定义可知正确.
综上可知:②③④.
点评:熟练掌握一元二次不等式的解法、分类讨论思想方法、函数的定义及其图象与性质、图象变换、不等式的性质等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案