精英家教网 > 高中数学 > 题目详情
9.已知偶函数f(x)和奇函数g(x)的定义域都是(-4,4),且在(-4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(-4,-2)∪(0,2).

分析 令h(x)=f(x)g(x),根据h(x)的奇偶性和函数图象得出不等式的解.

解答 解:设h(x)=f(x)g(x),则h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),
∴h(x)是奇函数,
由图象可知:当-4<x<-2时,f(x)>0,g(x)<0,即h(x)>0,
当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,
∴h(x)<0的解为(-4,-2)∪(0,2).
故答案为(-4,-2)∪(0,2)

点评 本题考查了函数奇偶性的性质,函数图象的意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知集合A={x∈Z|(x+2)(x-1)<0},B={-2,-1},那么A∪B等于(  )
A.{-2,-1,0,1}B.{-2,-1,0}C.{-2,-1}D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图所示,在平行四边形ABCD中,AB=4,AD=3,E是边CD的中点,$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,则sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知动直线l的方程:cosα•(x-2)+sinα•(y+1)=1(α∈R),给出如下结论:
①动直线l恒过某一定点;
②存在不同的实数α1,α2,使相应的直线l1,l2平行;
③坐标平面上至少存在两个点都不在动直线l上;
④动直线l可表示坐标平面上除x=2,y=-1之外的所有直线;
⑤动直线l可表示坐标平面上的所有直线;
其中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.记a=sin1,b=sin2,c=sin3,则(  )
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数y=sin(x+ϕ)的图象经过点$(\frac{π}{3},0)$,那么ϕ可以是(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$tan(-\frac{7π}{6})$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$|=1.|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求异面直线AC与B1D所成角的余弦值;
(Ⅱ)设M是线段B1D上一点,在长方体ABCD-A1B1C1D1内随机选取一点,若该点取自于三棱锥M-ACD内的概率为$\frac{1}{18}$,试确定点M的位置.

查看答案和解析>>

同步练习册答案