精英家教网 > 高中数学 > 题目详情
5.如图,已知正四棱柱ABCD-A1B1C1D1 的底面边长为3,侧棱长为4,连接A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E.
(1)求证:D1B⊥平面AEC;
(2)求三棱锥B-AEC的体积;
(3)求二面角B-AE-C的大小.

分析 (1)由已知条件推导出BE=$\frac{9}{4}$,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明D1B⊥平面AEC.
(2)由VB-AEC=VE-ABC,利用等积法能求出三棱锥B-AEC的体积.
(3)求出平面AEC的法向量和平面ABE的法向量,由此利用向量法能求出二面角B-AE-C的大小.

解答 (1)证明:∵正四棱柱ABCD-A1B1C1D1 的底面边长为3,侧棱长为4,
连接A1B,过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E,
∴A1B=$\sqrt{16+9}$=5,AF=$\frac{4×3}{5}$=$\frac{12}{5}$,
∴cos∠BAE=$\frac{\frac{12}{5}}{3}$=$\frac{4}{5}$,sin∠BAE=$\frac{3}{5}$,
∴cos∠BAE=$\frac{3}{AE}$=$\frac{4}{5}$,解得AE=$\frac{15}{4}$,
∴sin∠BAE=$\frac{BE}{\frac{15}{4}}$=$\frac{3}{5}$,解得BE=$\frac{9}{4}$,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
由已知得A(3,0,0),B(3,3,0),E(3,3,$\frac{9}{4}$),D1(0,0,4),C(0,3,0),
$\overrightarrow{AE}$=(0,3,$\frac{9}{4}$),$\overrightarrow{AC}$=(-3,3,0),$\overrightarrow{{D}_{1}B}$=(3,3,-4),
∴$\overrightarrow{AE}•\overrightarrow{{D}_{1}B}$=0+9-9=0,$\overrightarrow{AC}•\overrightarrow{{D}_{1}B}$=-9+9+0=0,
∴AE⊥D1B,AC⊥D1B,
又AE∩AC=A,∴D1B⊥平面AEC.
(2)解:${S}_{△ABC}=\frac{1}{2}×AB×BC=\frac{1}{2}×3×3=\frac{9}{2}$,
BE⊥平面ABC,且BE=$\frac{9}{4}$,
∴三棱锥B-AEC的体积:
VB-AEC=VE-ABC=$\frac{1}{3}×{S}_{△ABC}×BE$=$\frac{1}{3}×\frac{9}{2}×\frac{9}{4}$=$\frac{81}{24}$.
(3)解:$\overrightarrow{AE}$=(0,3,$\frac{9}{4}$),$\overrightarrow{AC}$=(-3,3,0),
设平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=3y+\frac{9}{4}z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-3x+3y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-$\frac{4}{3}$),
又平面ABE的法向量$\overrightarrow{m}$=(1,0,0),
设二面角B-AE-C的平面角为α,
cosα=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=|$\frac{1}{\sqrt{\frac{34}{9}}}$|=$\frac{3\sqrt{34}}{34}$.
∴α=arccos$\frac{3\sqrt{34}}{34}$.
∴二面角B-AE-C的大小为arccos$\frac{3\sqrt{34}}{34}$.

点评 本题考线面垂直的证明,考查三棱锥的体积的求法,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知A={1,2,x},B={1,x2},且A∩B=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PD⊥平面ABCD;四边形ABCD是菱形,经过AC作与PD平行的平面交PB与点E,ABCD的两对角线交点为F.求证:AC⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=4+tsinα}\end{array}\right.$(t为参数,α∈R),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ-4sinθ=0.
(1)当α=$\frac{3π}{4}$时,求直线l与曲线C的交点的极坐标;
(2)若直线l与曲线C交于A、B两点,且|AB|=2$\sqrt{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1+lnx}{x}$.
(1)求函数f(x)的单调区间和极值;
(2)若对任意的x∈(0,+∞),不等式lnx≤kx2-1恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C参数方程为$\left\{\begin{array}{l}{x=4+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),判断直线l与圆C的位置关系,并求圆C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线ax-y+2=0与直线3x-y+b=0关于直线y=-x对称,则a=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同.已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),斜率为$\frac{\sqrt{3}}{3}$的直线l交y轴与点E(0,1).
(Ⅰ)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)直线l与曲线C交于A、B两点,求|EA|•|EB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\underset{lim}{x→0}$$\frac{x-sinx}{x}$=0.

查看答案和解析>>

同步练习册答案