精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=x3-3x.
(Ⅰ)求函数f(x)在[-2,1]上的最大值和最小值.
(Ⅱ)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值和最小值即可;
(Ⅱ)欲求出切线方程,只须求出其斜率即可,故先设切点坐标为(t,t3-3t),利用导数求出在x=t处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

解答 解:(Ⅰ)f(x)=x3-3x,
f′(x)=3x2-3=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
故f(x)在[-2,-1)递增,在(-1,1]递减,
而f(-2)=-2,f(-1)=2,f(1)=-2,
∴f(x)的最小值是-2,
f(x)的最大值是2;
(Ⅱ)∵f′(x)=3x2-3,
设切点坐标为(t,t3-3t),
则切线方程为y-(t3-3t)=3(t2-1)(x-t),
∵切线过点P(2,-6),∴-6-(t3-3t)=3(t2-1)(2-t),
化简得t3-3t2=0,∴t=0或t=3.
∴切线的方程:3x+y=0或24x-y-54=0.

点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}sin(πx)(x∈[{-2,0}])\\{3^{-x}}+1\;(x>0)\end{array}\right.$,则y=f[f(x)]-4的零点为(  )
A.$-\frac{π}{2}$B.$\frac{1}{2}$C.$-\frac{3}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(z)=$\overline{z}$,且z1=1+5i,z2=-3+3i,则$f(\overline{{z_1}-{z_2}})$=(  )
A.4+2iB.4+3iC.4-2iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等比数列{an}中,a1=1,a5=16,则公比q为(  )
A.±2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)是R上的可导函数,且f′(x)≥-f(x),f(0)=1,f(2)=$\frac{1}{{e}^{2}}$.则f(1)的值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数${(\frac{{1-\sqrt{3}i}}{i})^2}$=(  )
A.-3+4iB.2+2$\sqrt{3}$iC.3-4D.-3-4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=1-3sin2x的最小正周期为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x=-1是函数f(x)=x(x-a)2的极小值点,则a=(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于两个复数$α=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,$β=-\frac{1}{2}-\frac{{\sqrt{3}}}{2}i$,有下列四个结论:①αβ=1;②$\frac{α}{β}=1$;③$\frac{|α|}{|β|}=1$;④α33=2,其中正确的结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案