精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣ ,2]
B.[﹣ ]
C.[﹣2 ,2]
D.[﹣2 ]

【答案】A
【解析】解:当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,
即为﹣x2+x﹣3≤ +a≤x2﹣x+3,
即有﹣x2+ x﹣3≤a≤x2 x+3,
由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣
由y=x2 x+3的对称轴为x= <1,可得x= 处取得最小值
则﹣ ≤a≤
当x>1时,关于x的不等式f(x)≥| +a|在R上恒成立,
即为﹣(x+ )≤ +a≤x+
即有﹣( x+ )≤a≤ +
由y=﹣( x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2
由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.
则﹣2 ≤a≤2②
由①②可得,﹣ ≤a≤2.
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义域上的单调递增函数

(1)求证:命题“设,若,则”是真命题

(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,圆的参数方程为为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,直线的方程为.

(Ⅰ)求圆的普通方程及直线的直角坐标方程;

(Ⅱ)设平面直角坐标系中的点,经过点倾斜角为的直线相交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为 ,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本()表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,是棱的中点.

(1)求证:

(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆

⑴若圆的半径为2,圆 轴相切且与圆外切,求圆的标准方程;

⑵若过原点的直线与圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程是为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点的极坐标分别是,直线与曲线相交于P、Q两点,射线OP与曲线相交于点A,射线OQ与曲线相交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣
B.
C.
D.1

查看答案和解析>>

同步练习册答案