精英家教网 > 高中数学 > 题目详情
某四棱锥的三视图如图所示,则该四棱锥的四个侧面面积中,最大的面积值为
 

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图.
解答: 解:由题意,该四棱锥的四个侧面面积中,较大的两个面的面积分别为
S1=
1
2
×4×
42+32
=10,
S2=
1
2
×3×
42+42
=6
2

6
2
<10,
故答案为:10.
点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,使用模拟方法估计圆周率值的程序框图,P表示估计的结果,则图中空白框内应填入P=(  )
A、
M
1000
B、
1000
M
C、
4M
1000
D、
1000
4M

查看答案和解析>>

科目:高中数学 来源: 题型:

坛子中有6个阄,其中3个标记为“中奖”,另外三个标记是“谢谢参与”,甲、乙、丙三人份两轮按甲、乙、丙、甲、乙、丙的顺序依次抽取,当有人摸到“中奖”阄时,摸奖随即结束.
(1)若按有放回抽取,甲、乙、丙的中奖概率分别是多少?
(2)若按不放回抽取,甲、乙、丙的中奖概率分别是多少?
(3)按不放回抽取,第一轮摸奖时有人中奖则可获得奖金10000元,第二轮摸奖时才中奖可获得奖金6000元,求甲、乙、丙三人所获奖金总额ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+a,x<2
-x-2a,x≥2
,若f(2-a)=f(2+a),则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点M(a,0)(a>0)的动直线l交抛物线y2=4x于A、B两点,点N与点M关于y轴对称,
(1)当a=1时,求证:∠ANM=∠BNM;
(2)对于给定的正数a,是否存在直线l′:x=m,使得l′被以AM为直径的圆所截得的弦长为定值?如果存在,求出直线l′的方程,如果不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足:
x-y+1≤0
x+y-2≤0
x+1≥0
,则目标函数z=4x+y的最大值为(  )
A、2
B、3
C、
7
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域内的任意x1,x2(x1≠x2),有以下结论:
①f(0)=1; 
②f(x1+x2)=f(x1)•(x2); 
③f(x1•x2)=f(x1)+(x2);
f(x1)-f(x2)
x1-x2
>0; 
⑤f(
x1+x2
2
)<
f(x1)+f(x2)
2

当f(x)=lgx时,上述结论中,正确的是
 
(填入你认为正确的所有结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,3,x},集合B={3,7,11},对任意x∈A,f:x→2x+1表示从集合A到集合B的函数,则实数x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+1,且函数f(x)在(-∞,-1]上是单调递减函数,在[1,+∞)上是单调递增函数.
(1)求实数a的取值集合A;
(2)设函数g(x)=-x2-x+
3
4
,若对任意a∈A及t∈[-1,1]都有不等式m2+2tm+1≥g(a)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案