精英家教网 > 高中数学 > 题目详情
14.某人投篮一次投中的概率是$\frac{1}{3}$,设投篮5次,投中,投不中的次数分别是ξ,η,则事件“ξ≤η”的概率为(  )
A.$\frac{2}{9}$B.$\frac{64}{81}$C.$\frac{17}{81}$D.$\frac{1}{81}$

分析 由题意可得P(ξ≤η)=P(ξ≤5-ξ)=P(ξ≤2)=P(ξ=0)+P(ξ=1)+P(ξ=2),再根据n次独立重复试验中恰好发生k次的概率公式计算求得结果.

解答 解:P(ξ≤η)=P(ξ≤5-ξ)=P(ξ≤2)=P(ξ=0)+P(ξ=1)+P(ξ=2)
=$C_5^0{(\frac{1}{3})^0}•{(\frac{2}{3})^5}+C_5^1{(\frac{1}{3})^1}•{(\frac{2}{3})^4}+C_5^2{(\frac{1}{3})^2}•{(\frac{2}{3})^3}=\frac{64}{81}$,
故选:B.

点评 本题考查相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k次的概率公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知点A(1,2),直线l:x-y-1=0,则点A关于直线l的对称点A'的坐标为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中,a3=9,a6=18,且满足an+2=2an+1-an
(1)求数列{an}的通项公式;
(2)设数列{cn}满足cn=$\frac{2}{{{a_n}+3{n^2}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P是椭圆$\frac{x^2}{5}$+y2=1上任一点,F为椭圆的右焦点,Q(3,0),且|PQ|=$\sqrt{2}$|PF|,则满足条件的点 P的个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设$\overrightarrow a,\overrightarrow b$为单位向量,且$\overrightarrow a⊥\overrightarrow b$,若向量$\overrightarrow c$满足$|{\overrightarrow c-({\overrightarrow a+\overrightarrow b})}|=|{\overrightarrow a-\overrightarrow b}|$,则$|{\overrightarrow c}|$的最大值是(  )
A.$2\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,若复数-3i(a+i)(a∈R)的实部与虚部相等,则a=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数z满足2z+i=1+$\overline{z}$i,则|z|=(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{3}$C.-$\frac{\sqrt{2}}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.随机抽取某中学高三年级甲,乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图,其中甲,乙两班各有一个数据被污损.
(1)若已知甲班同学身高众数有且仅有一个为179,乙班同学身高的中位数为172,求甲,乙两班污损处的数据;
(2)在(1)的条件下,求甲,乙两班同学身高的平均值;
(3)①若已知甲班同学身高的平均值大于乙班同学身高的平均值,求甲班污损处的数据的值;
②在①的条件下,从乙班这10名同学中随机抽取两名身高高于170cm的同学,求身高为181cm的同学被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC的外接圆为⊙O,延长CB至Q,延长QA至P,使得QA成为QC,QB的等比中项.
(Ⅰ)求证:QA为⊙O的切线;
(Ⅱ)若AC恰好为∠BAP的平分线,AB=4,AC=6,求QA的长度.

查看答案和解析>>

同步练习册答案