精英家教网 > 高中数学 > 题目详情

某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额(元)
0
1000
2000
3000
4000
车辆数(辆)
500
130
100
150
120
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占,在赔付金额为4000元的样本车辆中,车主是新司机的占,(3)估计在已投保车辆中,新司机获赔金额为4000元的概率.

(1)0.27;(2)0.24.

解析试题分析:(1)设表示事件“赔付金额为3000元”,表示事件“赔付金额为4000元”,以频率估计概率求得,在根据投保金额为2800,赔付金额大于投保金额对应的情形时3000元和4000元,问题就得以解决;
(2)设表示事件“投保车辆中新司机获赔4000元”,分别求出样本车辆中车主为新司机人数和赔付金额为4000元的车辆中车主为新司机人数,在求出其频率,最后利用频率表示概率.
试题解析:
(1)设表示事件“赔付金额为3000元”,表示事件“赔付金额为4000元”,以频率估计概率得:

由于投保金额为2800,赔付金额大于投保金额对应的情形时3000元和4000元,所以其概率为:

表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有,而赔付金额为4000元的车辆中车主为新司机的有
所以样本中车辆中新司机车主获赔金额为4000元的频率为
由频率估计概率得
考点:古典概型及其概率计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设有关于x的一元二次方程x2+2ax+b2="0." (l)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
 
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校高一年级组建了A、B、C、D四个不同的“研究性学习”小组,要求高一年级学生必须参加,
且只能参加一个小组的活动.假定某班的甲、乙、丙三名同学对这四个小组的选择是等可能的.
(1)求甲、乙、丙三名同学选择四个小组的所有选法种数;
(2)求甲、乙、丙三名同学中至少有二人参加同一组活动的概率;
(3)设随机变量X为甲、乙、丙三名同学参加A小组活动的人数,求X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

 
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
 
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

随机观测生产某种零件的某工厂名工人的日加工零件数(单位:件),获得数据如下:,根据上述数据得到样本的频率分布表如下:

分组
频数
频率















(1)确定样本频率分布表中的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取人,至少有人的日加工零件数落在区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•陕西)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到火车站的人进行调查,调查结果如下:

所用时间(分钟)
10~20
20~30
30~40
40~50
50~60
选择L1的人数
6
12
18
12
12
选择L2的人数
0
4
16
16
4

(Ⅰ)试估计40分钟内不能         赶到火车站的概率;
(Ⅱ)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(Ⅲ)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的 路径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:

 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:其中

查看答案和解析>>

同步练习册答案