精英家教网 > 高中数学 > 题目详情
17.若点P(m,n)在圆x2+y2=4上,则点M(3m,2n)的轨迹方程是$\frac{(3m)^{2}}{36}+\frac{(2n)^{2}}{16}=1$.

分析 利用点P(m,n)在圆x2+y2=4上,可得m2+n2=4,即可得出$\frac{(3m)^{2}}{36}+\frac{(2n)^{2}}{16}=1$.

解答 解:∵点P(m,n)在圆x2+y2=4上,
∴m2+n2=4,
∴$\frac{(3m)^{2}}{36}+\frac{(2n)^{2}}{16}=1$,
故答案为:$\frac{(3m)^{2}}{36}+\frac{(2n)^{2}}{16}=1$.

点评 本题考查点、圆的位置关系,考查轨迹方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知全集U=Z,集合A={1,2},B={2,3,4},那么(∁UA)∩B={3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将下列根式化为分数指数幂的形式.
(1)$\root{3}{\sqrt{a\sqrt{a}}}$(a>0);
(2$\frac{1}{\root{3}{x(\root{5}{{x}^{2}})^{2}}}$;
(3)($\root{4}{{b}^{-\frac{2}{3}}}$)${\;}^{-\frac{2}{3}}$(b>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数x、y满足2x2+4xy+2y2+x2y2≤9,求u=2$\sqrt{2}$(x+y)+xy的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程1-|x|=$\sqrt{1-{y}^{2}}$表示的曲线是(  )
A.一个圆B.两个圆C.半个圆D.两个半圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$$+\frac{8}{1+co{s}^{2}x}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,圆x2+y2=$\frac{4}{5}$与直线$\frac{x}{a}+\frac{y}{b}=1$相切,O为坐标原点.
(1)求椭圆E的方程;
(2)已知定点Q(t,0)(t>0),斜率为1的直线l过点Q且与椭圆E交于不同的两点C,D,若$\overrightarrow{ON}$=cosθ•$\overrightarrow{OC}$+sinθ•$\overrightarrow{OD}$,且对于任意θ∈[0,2π)总有点N在椭圆E上,求满足条件的实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列各不等式:
(1)|$\frac{1}{3}$x|≥7;       
(2)|10x|<$\frac{2}{5}$;       
(3)|x-6|<0.1      
(4)3≤|8-x|;
(5)|2x+5|<6;     
(6)|4x-1|≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知1g(x+2y)+1g(x-y)=1g2+1gx+lgy,求$\frac{x}{y}$的值.

查看答案和解析>>

同步练习册答案