【题目】已知函数,其中;
(Ⅰ)若函数在处取得极值,求实数的值,
(Ⅱ)在(Ⅰ)的结论下,若关于的不等式,当时恒成立,求的值.
(Ⅲ)令,若关于的方程在内至少有两个解,求出实数的取值范围.
【答案】(1)(2) (3)
【解析】分析: (Ⅰ)函数在处取得极值,当时,,即可求实数的值,
(Ⅱ)当时,,整理得得,求出右边的最小值,即可求的值;
(Ⅲ)令,构造函数,即方程在区间上只少有两个解,又,所以方程在区间上有解,分类讨论,即可求出实数的取值范围.
详解:(Ⅰ)
当时,,解得
经验证满足条件,
(Ⅱ)当时,
整理得
令,
则,
所以,即
∴
(Ⅲ)
令,,构造函数
即方程在区间上只少有两个解
又,所以方程在区间上有解
当时,,即函数在上是增函数,且,
所以此时方程在区间上无解
当时,,同上方程无解
当时,函数在上递增,在上递减,且
要使方程在区间上有解,则,即
所以此时
当时,函数在上递增,在上递减,且,
此时方程在内必有解,
当时,函数在上递增,在上递减,且
所以方程在区间内无解
综上,实数的范围是
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
与的情况如上:
所以,的单调递减区间是,单调递增区间是.
(Ⅱ)当,即时,函数在上单调递增,
所以在区间上的最小值为.
当,即时,
由(Ⅰ)知在上单调递减,在上单调递增,
所以在区间上的最小值为.
当,即时,函数在上单调递减,
所以在区间上的最小值为.
综上,当时,的最小值为;
当时,的最小值为;
当时,的最小值为.
【题型】解答题
【结束】
19
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.
(1)求的方程;
(2)若点在上,过作的两弦与,若,求证: 直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为, , 为椭圆上一点,且到两个焦点的距离之和为6.
(1)求椭圆的标准方程;
(2)若已知直线,当为何值时,直线与椭圆有公共点?
(3)若,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量的算术平方根成正比例,其关系如图1,B产品的利润与投资量成正比例,其关系如图2(注:利润与投资量的单位:万元).
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线C的极坐标方程为.
(1)求曲线的普通方程和的直角坐标方程;
(2)设分别交于点,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com