精英家教网 > 高中数学 > 题目详情

【题目】随着支付宝、微信等支付方式的上线,越来越多的商业场景可以实现手机支付.有关部门为了了解各年龄段的人使用手机支付的情况,随机调查了50次商业行为,并把调查结果制成下表:

年龄(岁)

频数

5

10

15

10

5

5

手机支付

4

6

10

6

2

0

(1)若把年龄在的人称为中青年,年龄在的人称为中老年,请根据上表完成以下列联表;并判断是否可以在犯错误的概率不超过0.05的前提下,认为使用手机支付与年龄(中青年、中老年)有关系?

手机支付

未使用手机支付

总计

中青年

中老年

总计

(2)若从年龄在的被调查中随机选取2人进行调查,记选中的2人中,使用手机支付的人数为,求的分布列及数学期望.

参考公式:,其中.

独立性检验临界值表:

0.15

0.10

0.005

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)不能(2)见解析

【解析】分析:(1)根据题意完成列联表,求出,然后进行判断;

(2)利用超几何分布可求的分布列及数学期望.

详解:

(1)2×2列联表如图所示:

手机支付

未使用手机支付

总计

中青年

20

10

30

中老年

8

12

20

总计

28

22

50

所以在犯错误的概率不超过的前提下不能认为使用手机支付与年龄(中青年、中老年)有关系.

(2)年龄在的被调查者共人,其中使用手机支付的有人,则抽取的人中使用手机支付的人数可能取值为

所以X的分布列为:

X

0

1

2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,并整理得到如下频率分布直方图:

(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;

(Ⅱ)估计该区居民年龄的中位数(精确到);

(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知,函数

(I)当为何值时, 取得最大值?证明你的结论;

(II) 上是单调函数,求的取值范围;

(III)设,当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求证二面角A1﹣BC1﹣B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的导函数,则的图象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O是坐标原点,两定点A,B满足| |=| |= =2,则点集{P| ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,∠ABC=BCD=90°,EPB的中点。

1)证明:CE∥面PAD.

2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fn(x)=﹣1+x+ + +…+ (x∈R,n∈N+),证明:
(1)对每个n∈N+ , 存在唯一的x∈[ ,1],满足fn(xn)=0;
(2)对于任意p∈N+ , 由(1)中xn构成数列{xn}满足0<xn﹣xn+p

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:

(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;

(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。

是否需要志愿者

性别

需要

40

30

不需要

160

270

参考数据:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案