精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣a|,不等式f(x)≤3的解集为[﹣1,5].
(Ⅰ)求实数a的值;
(Ⅱ)若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

【答案】解:(Ⅰ)由f(x)≤3,得|x﹣a|≤3,
∴a﹣3≤x≤a+3,
又f(x)≤3的解集为[﹣1,5].
,解得:a=2;
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x﹣3)|=5.
又f(x)+f(x+5)≥m对一切实数x恒成立,
∴m≤5
【解析】(Ⅰ)由f(x)≤3求解绝对值的不等式,结合不等式f(x)≤3的解集为[﹣1,5]列式求得实数a的值;(Ⅱ)利用绝对值的不等式放缩得到f(x)+f(x+5)≥5,结合f(x)+f(x+5)≥m对一切实数x恒成立,即可求得实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为

)求双曲线的方程

)若直线与双曲线交于不同的两点,且线段的垂直平分线过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C的方程为,点

求过点M且与圆C相切的直线方程;

过点M任作一条直线与圆C交于AB两点,圆Cx轴正半轴的交点为P,求证:直线PAPB的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,设命题:函数上单调递减;命题:函数上为增函数,

(1)若“”为真,求实数的取值范围

(2)若“”为假,“”为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

同步练习册答案