精英家教网 > 高中数学 > 题目详情
在△ABC中,A(-1,1),B(3,3),C(a,2a),∠C为钝角,则a的取值范围是(  )
A、(-∞,0)∪(2,+∞)
B、(0,2)
C、(0,1)
D、(0,1)∪(1,2)
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:求出向量CA,CB的坐标,求出向量CA,CB的数量积及共线的情况,再由∠C为钝角,则
CA
CB
<0,且
CA
CB
不共线,解不等式即可得到a的范围.
解答: 解:在△ABC中,A(-1,1),B(3,3),C(a,2a),
CA
=(-1-a,1-2a),
CB
=(3-a,3-2a),
CA
CB
,则(1-2a)(3-a)=(-1-a)(3-2a),
解得,a=1.
CA
CB
=(-1-a)(3-a)+(1-2a)(3-2a)=5a2-10a,
由于∠C为钝角,则
CA
CB
<0,且
CA
CB
不共线,
即有5a2-10a<0且a≠1,
解得,0<a<2且a≠1.
故选D.
点评:本题考查向量的夹角为钝角的等价条件,考查向量的数量积的坐标表示和向量共线的坐标公式,考查运算能力,属于基础题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1+a2+…+an=n2
(1)在数列{an}的通项公式;
(2)求数列{
an
2n
}的前n项和Sn
(3)求数列{
4
anan+1an+2
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,且a≠1,设p:函数y=ax在R上递增;q:函数f(x)=x2-2ax-1在(
1
3
,+∞)
上单调递增,若“p且q”为假,“p或q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图所示的程序框图,当输入n=99时,输出S的值(  )
A、
99
100
B、
49
50
C、
97
100
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x0)=0,f′(x0)=
1
2
,则
lim
△x→0
 
f(x0+3△x)
△x
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

菱形ABCD的边长为2,∠A=
π
3
,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个正四面体棱长为6,则该正四面体的内切球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:cos2θ•x+cos2θ•y-1=0(θ∈R),圆C:x2+y2=1,
(Ⅰ) 求证:无论θ为何值,直线l恒过定点P;
(Ⅱ) 若直线l与圆C的一个公共点为A,过坐标原点O作PA的垂线,垂足为M,求点M的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=-f(2a-x),则称f(x)为准奇函数.给定下列函数:
①f(x)=
1
x-1
②f(x)=(x-1)2
③f(x)=x3④f(x)=cosx
其中所有准奇函数的序号是
 

查看答案和解析>>

同步练习册答案