精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
1x

(1)求函数f(x)的定义域.
(2)判断函数的奇偶性,并加以证明;
(3)用定义证明f(x)在(0,1)上是减函数.
分析:(1)求函数f(x)的定义域,可令函数解析式的分母不为0,即可得到所求函数的定义域;
(2)判断函数的奇偶性,要用定义法,由函数解析式研究f(-x)与f(x)的关系,即可证明出函数的性质;
(3)此函数是一个减函数,由定义法证明要先任取定义域内两个实数x1,x2且x1<x2,再两函数值作差,判断差的符号,再由定义得出结论.
解答:解:(1)由题意若函数f(x)=x+
1
x
的解析式有意义
自变量须满足x≠0,
所以函数的定义域是(-∞,0)∪(0,+∞)
(2)此函数是一个奇函数,证明如下
由(1)知函数的定义域关于原点对称,
又∵f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x),
∴函数是奇函数;
(3)此函数在(0,1)上是减函数,证明如下:
任取x1,x2∈(0,1)且x1<x2
∴x1-x2<0,x1•x2<1,x1•x2-1<0
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)(
x1x2-1
x1x2
)>0
即有f(x1)-f(x2)>0,
即f(x1)>f(x2
故函数在(0,1)上是减函数
点评:本题考查了求函数的定义域,对数的运算法则,判断函数的奇偶性,定义法证明函数单调性,正确解答本题,关键是熟练记忆函数的性质及这些性质判断的方法,其中判断函数的单调性是本题的难点,定义法判断函数的单调性,其步骤是;取,作差,判号,得出结论,其中判号这一步易疏漏,切记
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案