精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且Sn=4an+2n+1,n∈N*
(1)求证:{an-2}是等比数列;
(2)求数列{nan}前n项和Tn
(1)∵Sn=4an+2n+1,
∴S1=4a1+3,而S1=a1
∴a1=-1;
当n≥2时,an=Sn-Sn-1
=(4an+2n+1)-[4an-1+2(n-1)+1]
=4an-4an-1+2,
∴3an+2=4an-1
∴3an-6=4an-1-8,即3(an-2)=4(an-1-2),又a1-2=-3,
∴{an-2}是以-3为首项,公比为
4
3
等比数列.
∴an-2=-3×(
4
3
)
n-1

∴an=2-3×(
4
3
)
n-1

(2)∵an=2-3×(
4
3
)
n-1
,令bn=nan
则bn=nan=2n-3n×(
4
3
)
n-1

∴Tn=b1+b2+…+bn
=2(1+2+3+…+n)-3[1×(
4
3
)
0
+2×(
4
3
)
1
+3×(
4
3
)
2
+…+n×(
4
3
)
n-1
].
令Cn=1×(
4
3
)
0
+2×(
4
3
)
1
+3×(
4
3
)
2
+…+n×(
4
3
)
n-1
①,
4
3
Cn=1×(
4
3
)
1
+2×(
4
3
)
2
+…+(n-1)×(
4
3
)
n-1
+n×(
4
3
)
n
②,
①-②得:-
1
3
Cn=(
4
3
)
0
+(
4
3
)
1
+(
4
3
)
2
+…+(
4
3
)
n-1
-n×(
4
3
)
n

=
1-(
4
3
)
n
1-
4
3
-n×(
4
3
)
n

=-3(1-(
4
3
)
n
)-n×(
4
3
)
n

=(3-n)×(
4
3
)
n
-3,
∴Cn=(3n-9)×(
4
3
)
n
+9.
∴Tn=2×
n(1+n)
2
-3[(3n-9)×(
4
3
)
n
+9]
=-(9n-27)×(
4
3
)
n
+n2+n-27.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

数列中,,当时,等于的个位数,若数列 前项和为243,则=    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)已知数列{an}的前n项和Sn满足Sn=
a
a-1
(an-1)(a为常数且a≠0,a≠1,n∈N*)

(1)求数列{an}的通项公式;
(2)记bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记Cn=
1
1+an
+
1
1-an+1
,设数列{Cn}的前n项和为Tn,求证:Tn>2n-
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=(  )
A.
1
n(n+2)
B.
1
2
(1-
1
n+2
C.
1
2
3
2
-
1
n+1
-
1
n+2
D.
1
2
(1-
1
n+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项公式an和前n项和Sn
(2)设Cn=
5-an
2
,bn=2cn求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正项等比数列{an}中,a2=3,则其前3项的和S3的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求a2,a3的值;
(Ⅱ)证明数列{an}是等比数列,写出数列{an}的通项公式;
(Ⅲ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=1,an+1
an
=8

(Ⅰ)求a2,a3
(Ⅱ)设bn=log2an,求证:{bn-2}为等比数列;
(Ⅲ)求{an}的前n项积Tn

查看答案和解析>>

同步练习册答案