精英家教网 > 高中数学 > 题目详情

【题目】设双曲线的左,右焦点分别为F1F2,过F1的直线l交双曲线左支于AB两点,则|BF2|+|AF2|的最小值为(  )

A. B. 11

C. 12 D. 16

【答案】B

【解析】-=1a2=4,b2=3,

c2=7,c=,F1(-,0),F2(,0),

又点AB在双曲线左支上,

∴|AF2|-|AF1|=4,|BF2|-|BF1|=4,

∴|AF2|=4+|AF1|,|BF2|=4+|BF1|,

∴|AF2|+|BF2|=8+|AF1|+|BF1|.

要求|AF2|+|BF2|的最小值,只要求|AF1|+|BF1|的最小值,|AF1|+|BF1|最小为=3.

∴(|AF2|+|BF2|)min=8+3=11.故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,底面ABCD是边长为2的正方形,SASBSCSD,点EMN分别是BCCDSC的中点,点PMN上的一点.

1)证明:EP∥平面SBD

2)求四棱锥SABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知,求的最大值;

2)已知,求的最小值;

3)已知,求的最大值;

4)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球、两个“”号球、三个“”号球、四个无号球,箱内有五个“”号球、五个“”号球,每次摸奖后放回,消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元、“”号球奖元、“”号球奖元,摸得无号球则没有奖金.

(Ⅰ)经统计,消费额服从正态分布,某天有为顾客,请估计消费额(单位:元)在区间内并中奖的人数;

(Ⅱ)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列;

(Ⅲ)某顾客消费额为元,有两种摸奖方法,方法一:三次箱内摸奖机会;方法二:一次箱内摸奖机会,请问:这位顾客选哪一种方法所得奖金的期望值较大.

附:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若在区间上有极值,求实数的取值范围;

(Ⅱ)若有唯一的零点,试求的值.(注:为取整函数,表示不超过的最大整数,如;以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

两县城AB相聚20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对称A和城B的总影响度为0.0065.1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,点在曲线上,且曲线在点处的切线与直线垂直.

(1)求的值;

(2)如果当时,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.

(1)若x∈[-],且a∥(bc),求x的值;

(2)若存在x∈R,使得(ad)⊥(bc),求k的取值范围.

查看答案和解析>>

同步练习册答案