【题目】某公园内有一块以O为圆心半径为20米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形OAB区域,其中两个端点A,B分别在圆周上;观众席为等腰梯形ABQP内且在圆O外的区域,其中,,且AB,PQ在点O的同侧.为保证视听效果,要求观众席内每一个观众到舞台中心O处的距离都不超过60米(即要求).设,.
(1)当时求舞台表演区域的面积;
(2)对于任意α,上述设计方案是否均能符合要求?
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程是(为参数),把曲线C的横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线直线l的普通方程是,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程和曲线的普通方程;
(2)记射线()与交于点A,与l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设曲线(),是直线上的任意一点,过作的切线,切点分别为、,记为坐标原点.
(1)设,求的面积;
(2)设、、的纵坐标依次为、、,求证:;
(3)设点满足,是否存在这样的点,使得关于直线的对称点在上?若存在,求出的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与轴的交点为P,与C的交点为Q,且过F的直线与C相交于A、B两点.
(1)求C的方程;
(2)设点且的面积为求直线的方程;
(3)若线段AB的垂直平分线与C相交于M、N两点,且A、M、B、N四点在同一圆上,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年某地区初中升学体育考试规定:考生必须参加长跑、掷实心球、1分钟跳绳三项测试.某学校在九年级上学期开始,就为掌握全年级学生1分钟跳绳情况,抽取了100名学生进行测试,得到下面的频率分布直方图.
(Ⅰ)规定学生1分钟跳绳个数大于等于185为优秀.若在抽取的100名学生中,女生共有50人,男生1分钟跳绳个数大于等于185的有28人.根据已知条件完成下面的列联表,并根据这100名学生的测试成绩,判断能否有99%的把握认为学生1分钟跳绳成绩是否优秀与性别有关.
1分钟跳绳成绩 | 优秀 | 不优秀 | 合计 |
男生人数 | 28 | ||
女生人数 | 100 | ||
合计 | 100 |
(Ⅱ)根据往年经验,该校九年级学生经过训练,正式测试时每人1分钟跳绳个数都有明显进步.假设正式测试时每人1分钟跳绳个数都比九年级上学期开始时增加10个,全年级恰有2000名学生,若所有学生的1分钟跳绳个数服从正态分布,用样本数据的平均值和标准差估计和,各组数据用中点值代替),估计正式测试时1分钟跳绳个数大于183的人数(结果四舍五入到整数
附: ,其中 .
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
若随机变量服从正态分布,则
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,各项均不相等的数列满足.令.给出下列三个命题:
(1)存在不少于3项的数列,使得;
(2)若数列的通项公式为,则对恒成立;
(3)若数列是等差数列,则对恒成立.
其中真命题的序号是( )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过点的直线与抛物线交于 两点,又过两点分别作抛物线的切线,两条切线交于点。
(1)证明:直线的斜率之积为定值;
(2)求面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=的图象在点(-2,f (-2))处的切线方程为16x+y+20=0.
(1)求实数a、b的值;
(2)求函数f(x)在区间[-1,2]上的最大值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com