精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)求过点A的圆的切线方程;
(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.

【答案】
(1)解:因为圆C:x2+y2﹣4x﹣6y+12=0(x﹣2)2+(y﹣3)2=1.

所以圆心为(2,3),半径为1.

当切线的斜率存在时,

设切线的斜率为k,则切线方程为kx﹣y﹣3k+5=0,

所以 =1,

所以k= ,所以切线方程为:3x﹣4y+11=0;

而点(3,5)在圆外,所以过点(3,5)做圆的切线应有两条,

当切线的斜率不存在时,

另一条切线方程为:x=3


(2)解:|AO|= =

经过A点的直线l的方程为:5x﹣3y=0,

故d=

故S= d|AO|=


【解析】(1)先把圆转化为标准方程求出圆心和半径,再设切线的斜率为k,写出切线方程,利用圆心到直线的距离等于半径,解出k,然后可得切线方程.(2)先求OA的长度,再求直线AO 的方程,再求C到OA的距离,然后求出三角形AOC的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机抽取高一年级n名学生,测得他们的身高分别是a1 , a2 , …,an , 则如图所示的程序框图输出的s=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中既是偶函数又在(﹣∞,0)上是增函数的是(
A.y=x
B.y=
C.y=x2
D.y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且在(0,+∞)是增函数,又f(﹣3)=0,则不等式xf(x)≥0的解集是(
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)当a=2时,求A∪B
(2)当BA时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].
(1)设t=3x , x∈[﹣1,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形的面积,若asinA+bsinB=csinC,且S= ,则对△ABC的形状的精确描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,将曲线为参数)上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程;

(2)已知点,直线的极坐标方程为,它与曲线的交点为 ,与曲线的交点为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程.

在平面直角坐标系中,倾斜角为的直线的参数方程为为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

同步练习册答案