精英家教网 > 高中数学 > 题目详情
已知f(x)=
a2x-1
2x+1
(a∈R)
,是R上的奇函数.
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
1+x
k
(1)由题知f(0)=0,得a=1,
此时f(x)+f(-x)=
2x-1
2x+1
+
2-x-1
2-x+1
=
2x-1
2x+1
+
1-2x
1+2x
=0

即f(x)为奇函数.
(2)∵y=
2x-1
2x+1
=1-
2
2x+1
,得2x=
1+y
1-y
(-1<y<1)

f-1(x)=log2
1+x
1-x
(-1<x<1)

(3)∵f-1(x)>log2
1+x
k
,∴
1+x
1-x
1+x
k
-1<x<1
,∴
x>1-k
-1<x<1

①当0<k<2时,原不等式的解集{x|1-k<x<1},
②当k≥2时,原不等式的解集{x|-1<x<1}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
a2x-1
2x+1
(a∈R)
,是R上的奇函数.
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
1+x
k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
ax3-a2x
,函数g(x)=
4x
3x2+3
,x∈[0,2]
(1)当a=1时,求f(x)在点(3,6)处的切线方程;
(2)求g(x)的值域;
(3)设a>0,若对任意x1∈[0,2],总存在x0∈[0,2],使g(x1)-f(x0)=0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
ax3-a2x,f(x)
的定义域为R,函数g(x)=
4x
3x2+3
,g(x)
的定义域为[0,2].
(1)设a≠0,求f(x)的单调区间;
(2)求g(x)的值域;
(3)设a>0,若对任意x1∈[0,2],总存在x0∈[0,2],使g(x1)-f(x0)=0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x-a
2x+a
是定义在R上的奇函数,
(Ⅰ)求a的值;
(Ⅱ)若f(x)=-
3
5
,求x的值.

查看答案和解析>>

同步练习册答案