精英家教网 > 高中数学 > 题目详情
17.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,求证:a2=b2+c2-2bc•cosA.

分析 采用向量法证明,由a的平方等于$\overrightarrow{BC}$的平方,利用向量的三角形法则,由$\overrightarrow{AC}$-$\overrightarrow{AB}$表示出$\overrightarrow{BC}$,然后利用平面向量的数量积的运算法则化简后,即可得到a2=b2+c2-2bccosA,

解答 证明:如图,
a2=$\overrightarrow{BC}$2=($\overrightarrow{AC}$-$\overrightarrow{AB}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\overrightarrow{AC}$2-2$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\overrightarrow{AB}$2
=$\overrightarrow{AC}$2-2|$\overrightarrow{AC}$||$\overrightarrow{AB}$|cosA+$\overrightarrow{AB}$2=b2-2bccosA+c2
即a2=b2+c2-2bccosA.
得证.

点评 此题考查学生会利用向量法证明余弦定理,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知全集U={1,2,3,4,5,6,7},集合A={1,3,4,6},B={2,4,5,6},则A∩(∁UB)=(  )
A.{1,3}B.{2,5}C.{4}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的顶点B,C的坐标分别为(0,0),(4,0),AB边上的中线的长为3,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,||φ|<$\frac{π}{2}$,则(  )
A.B=1B.φ=$\frac{π}{6}$C.ω=1D.A=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知tanα=$\frac{2}{5}$,则$\frac{cosα-3sinα}{2cosα+sinα}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,x>0}\\{-x,x≤0}\end{array}\right.$,
(1)作出f(x)的草图并写出f(x)的单调区间;
(2)求满足不等式f(a)>f($\frac{1}{4}$)的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在x轴上有一定点A(a,0)及一异于点A的动点A′,在y轴上有一定点B(0,b)及一异于点B的动点B′(ab≠0),且A′B′∥AB.求证:直线A′B与AB′的交点在一条确定的直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求直线x+y-3=0关于点A(2,3)的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=(x-a)(x-b)(x-c)的导函数为f′(x),其中a,b.c是互不相等的常数,则f′(a)+f′(b)+f′(c)的值(  )
A.大于0B.小于0C.等于0D.以上都有可能

查看答案和解析>>

同步练习册答案