精英家教网 > 高中数学 > 题目详情

【题目】未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如百鸡问题:公元五世纪末,我国古代数学家张丘建在《算经》中提出了百鸡问题鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?

算法设计:

(1)设母鸡、公鸡、小鸡数分别为则应满足如下条件

(2)先分析一下三个变量的可能值.的最小值可能为零若全部钱用来买母鸡最多只能买33只,

的值为中的整数的最小值为零最大值为50.的最小值为零最大值为100.

(3)对三个未知数来说取值范围最少为提高程序的效率先考虑对的值进行一一列举

(4)在固定一个的值的前提下再对值进行一一列举

(5)对于每个怎样去寻找满足百年买百鸡条件的.由于值已设定,便可由下式得到:

(6)这时的是一组可能解它只满足百鸡条件,还未满足百钱.是否真实解,还要看它们是否满足满足即为所求解

根据上述算法思想,画出流程图并用伪代码表示.

【答案】流程图见解析,伪代码见解析.

【解析】

试题分析:依据题设条件运用算法流程框图表示和运用伪代码语言描述算法流程求解.

试题解析:

这是一个循环结构的嵌套,可以用循环语句实现.

伪代码:

流程图:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列满足 (), .

(1)求证: 是等比数列,并求出数列的通项公式;

(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围;

(3)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且

(Ⅰ)求证:数列是等比数列;

(Ⅱ)设是数列的前项和,若对任意的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,讨论的单调性;

2若对任意的恒有成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:

消费次第






收费比例






该公司从注册的会员中, 随机抽取了位进行统计, 得到统计数据如下:

消费次第






频数






假设汽车美容一次, 公司成本为, 根据所给数据, 解答下列问题:

1)估计该公司一位会员至少消费两次的概率;

2)某会员仅消费两次, 求这两次消费中, 公司获得的平均利润;

3)以事件发生的频率作为相应事件发生的概率, 设该公司为一位会员服务的平均利润为, 的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下:

(1)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(2)在(1)中抽取的人中,随机抽取人,求分数在人的概率.

(3)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:

(1)游泳组中,青年人、中年人、老年人分别所占的比例;

(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,设,数列满足.

(1)求数列的通项公式;

(2)求数列的前项和

(3)若对一切正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cos C=.

()求ABC的周长; ()求cos A的值.

查看答案和解析>>

同步练习册答案