【题目】已知定义域为的函数是奇函数.
(1)求a,b的值;
(2)判断函数的单调性,并用定义证明;
(3)当时,恒成立,求实数k的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数在轴左侧的图象,如图所示,并根据图象:
(1)直接写出函数, 的增区间;
(2)写出函数, 的解析式;
(3)若函数, ,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线与正方形: 的边界相切.
(1)求的值;
(2)设直线交曲线于,交于,是否存在这样的曲线,使得, , 成等差数列?若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边,连接A1B,A1C,A1D.
(1)求长方体ABCD-A1B1C1D1体积的最大值 ;
(2)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中中,曲线的参数方程为为参数, ). 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)设是曲线上的一个动点,当时,求点到直线的距离的最大值;
(2)若曲线上所有的点均在直线的右下方,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了个轮胎,将每个轮胎的宽度(单位: )记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的个轮胎宽度的平均值;
(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.
(i)若从甲乙提供的个轮胎中随机选取个,求所选的轮胎是标准轮胎的概率;
(ii)试比较甲、乙两厂分别提供的个轮胎中所有标准轮胎宽度的方差大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,已知是边长为2的正方形, 为正三角形, 分别为的中点, 且, .
(1)求证: 平面;
(2)求证: 平面;
(3)求与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com