精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C的对边分别为a、b、c当三角形分别满足下列条件时,求cosB:
(1)若a、b、c成等比数列,c=2a;
(2)若bcosC=(3a-c)cosB.
分析:(1)由a、b、c成等比数列,可得b2=ac,再由 c=2a 和由余弦定理可得cosB=
a2+c2-b2
2ac
=
a2+4a2- a•2a
2a•2a
,运算求得结果.
(2)由题意并利用由正弦定理可得 sinBcosC=3sinAcosB-sinCcosB,即sin(B+C)=3sinAcosB,可得cosB=
1
3
解答:解:(1)若a、b、c成等比数列,则b2=ac,又 c=2a,由余弦定理可得
cosB=
a2+c2-b2
2ac
=
a2+4a2- a•2a
2a•2a
=
3
4

(2)若bcosC=(3a-c)cosB,则由正弦定理可得 sinBcosC=3sinAcosB-sinCcosB,
∴sin(B+C)=3sinAcosB,∴sinA=3sinAcosB,∴cosB=
1
3
点评:本题考查正弦定理、余弦定理、两角和的正弦公式的应用,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,三边长a、b、c成等比数列,且a2=c2+ac-bc,则
asinB
b
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2-3c2=0,则角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步练习册答案