精英家教网 > 高中数学 > 题目详情
7.已知圆的方程为x2+y2-6x=0.则该圆的圆心和半径分别是(  )
A.(0,0),r=3B.(3,0),r=3C.(-3,0),r=3D.(3,0)r=9

分析 化简圆的一般方程为标准方程,即可求出圆的圆心与半径.

解答 解:圆x2+y2-6x=0,即(x-3)2+y2=9,圆的圆心(3,0),半径为3.
故选B.

点评 本题考查圆的一般方程的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设$a=\sqrt{5}-\sqrt{6},b=\sqrt{6}-\sqrt{7}$,则a,b的大小关系为a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.双曲线x2-y2=2016的左、右顶点分别为A1、A2,P为其右支上一点,且P不在x轴上,若∠A1PA2=4∠PA1A2,则∠PA1A2等于(  )
A.$\frac{π}{12}$B.$\frac{π}{36}$C.$\frac{π}{18}$D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x-k)ex
(1)求f(x)的单调区间;
(2)当k=3时,求f(x)在区间[0,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=4cos?x•sin({?x+\frac{π}{4}})(?>0)$的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)讨论f(x)在区间[0,$\frac{π}{2}$]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3+3|x-a|+2(a∈R).
(1)当a=0时,讨论f(x)的单调性;
(2)求f(x)在区间[0,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.求满足${(\frac{1}{4})^{x-1}}$>16的x的取值集合是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组中的两个集合M和N,表示同一集合的是(  )
A.M={3,6},N={(3,6)}B.M={π},N={3.1415926}
C.M={x|1<x<3,x∈R},N={2}D.$M=\left\{{1,\sqrt{5},π}\right\},N=\left\{{1,π,|{-\sqrt{5}}|}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题:?x∈R,则2x2+2x+$\frac{1}{2}$<0的否定是(  )
A.?x∈R,则2x2+2x+$\frac{1}{2}$≥0B.?x0∈R,则2x02+2x0+$\frac{1}{2}$≥0
C.?x0∈R,则2x02+2x0+$\frac{1}{2}$<0D.?x∈R,则2x2+2x+$\frac{1}{2}$>0

查看答案和解析>>

同步练习册答案