精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=x+

1)若关于x的不等式f3x)≤m3x+2[-22]上恒成立.求实数m的取值范围;

2)若函数gx=f|2x-1|-3t-2有四个不同的零点,求实数t的取值范围.

【答案】(1); (2).

【解析】

(1)上恒成立,等价于上恒成立,换元后,利用二次函数的单调性求得的最大值即可得结果;(2),则,问题转化为关于的方程有两个不相等的实数根,且根据一元二次方程根的分布列不等式组求解即可.

(1)由题意得:上恒成立,

上恒成立,

,∵,∴

上恒成立,

又当时,,∴,即实数的取值范围为.

(2)方程

).

,则

故问题转化为关于的方程有两个不相等的实数根

,∴,解得

即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法的错误的是(  )

A. 经过定点的倾斜角不为的直线的方程都可以表示为

B. 经过定点的倾斜角不为的直线的方程都可以表示为

C. 不经过原点的直线的方程都可以表示为

D. 经过任意两个不同的点直线的方程都可以表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

573

6.8

289.8

1.6

215083.4

31280

表中.

根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)

根据的判断结果及表中数据,建立关于的回归方程;

已知这种产品的年利润的关系为.根据的结果回答下列问题:

年宣传费时,年销售量及年利润的预报值是多少?

年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的右焦点为F(2,0),且过点(2).

(1)求椭圆的标准方程;

(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为M,过点F且斜率为-1的直线与l交于点N,若sin∠FON(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:方程x2+2m-4x+m=0有两个不等的实数根:命题qx[23],不等式x2-4x+13≥m2恒成立.

1)若命题p为真命题,则实数m的取值范围;

2)若命题pq为真命题,命题pq为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个关于圆锥曲线的命题,

①双曲线与椭圆有相同的焦点;

②在平面内,设为两个定点,为动点,且,其中常数为正实数,则动点的轨迹为椭圆;

③方程的两根可以分别作为椭圆和双曲线的离心率;

④过双曲线的右焦点作直线交双曲线于两点,若,则这样的直线有且仅有3.

其中真命题的个数为( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1)求证:平面平面

2)若为棱的中点,求异面直线所成角的余弦值;

3)若二面角大小为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()

A. 函数上单调递增

B. 函数的图像关于直线对称

C. 时,函数的最小值为

D. 要得到函数的图像,只需要将的图像向右平移个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是正三角形,EACD都垂直于平面ABC,且FBE的中点,

求证:(1平面ABC

2平面EDB.

3)求几何体的体积.

查看答案和解析>>

同步练习册答案