精英家教网 > 高中数学 > 题目详情
5.将52名工人分成甲、乙两组生产配件,甲组负责生产150组A配件,乙组负责生产200组B配件,规定两组工人同时开始生产,现已知每名工人生产一组A配件需要0.4小时,生产-组B配件需要0.5小时,则当甲组分配20人时,生产配件的时间达到最短.

分析 设甲组分配x人,则乙组分配(52-x)人,可求出生产A、B配件所用时间,令t1=t2,可求x,然后代入检验即可.

解答 解:设甲组分配x人,则乙组分配(52-x)人
生产A配件所用时间t1=$\frac{150}{x}×0.4$=$\frac{60}{x}$,
生产B配件所用时间t2=$\frac{200}{52-x}$×0.5=$\frac{100}{52-x}$
令t1=t2,则$\frac{60}{x}$=$\frac{100}{52-x}$,解可得x=19.5
①当 x=19时,t1=$\frac{60}{x}$≈3.158,t2=$\frac{100}{52-x}$≈3.030<3.158,总用时 3.158小时
②当 x=20时,t1=$\frac{60}{x}$=3,t2=$\frac{100}{52-x}$=3.125>3,总用时 3.125小时
总用时 3.125小时<3.158小时
∴应分配甲组20人,乙组32人,总用时最短为$\frac{25}{8}$小时.
故答案为:20.

点评 本题主要考查利用数学知识解决实际问题,以及运算求解和应用意识,解题的关键是要把实际问题转化为数学,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知sin$\frac{π}{7}$=a,且cosx=$\sqrt{1-{a}^{2}}$,则x的取值集合为{x|x=2kπ+$\frac{π}{7}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-3,x≤0}\\{3x-2,x>0}\end{array}\right.$,若|f(x)|>ax,在x∈[-1,1]上恒成立,则实数a的取值范围(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列五个命题:
①函数y=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
②若lna<1成立,则a的取值范围是(-∞,e);
③函数f(x)=ax+1-2(a>0,a≠1)的图象过定点(-1,-1);
④方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
⑤函数f(x)=loga(6-ax)(a>0,a≠1)在[0,2]上为减函数,则1<a<3.
其中正确的个数(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,2a+1]上单调,求实数a的取值范围;
(3)当x∈[-1,1]时,y=f(x)图象恒在y=2x+2m+1的图象上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{3}$+$\frac{π}{12}$B.1+$\frac{π}{12}$C.$\frac{1}{3}$$+\frac{π}{4}$D.1$+\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足x2+(y-1)2=1,则$\frac{y+2}{x+1}$的最值的情况是[$\frac{4}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.a、b为任意实数,若(a,b)在曲线f(x,y)=0上,且(b,a)也在曲线f(x,y)=0上,则曲线f(x,y)=0的几何特征是(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数y=loga(x+3)(a>0,a≠1)的图象过定点A,若点A也在函数f(x)=3x+b的图象上,则f(log32)=$\frac{17}{9}$.

查看答案和解析>>

同步练习册答案