【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为 (α为参数),将曲线C1上所有点的横坐标缩短为原来的 ,纵坐标缩短为原来的 ,得到曲线C2 , 在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+ )+ =0.
(1)求曲线C2的极坐标方程及直线l与曲线C2交点的极坐标;
(2)设点P为曲线C1上的任意一点,求点P到直线l的距离的最大值.
【答案】
(1)解:曲线C1的参数方程为 (α为参数),
可得曲线C1的参数方程为 (α为参数),
利用同角三角函数的基本关系消去α,
可得x2+y2﹣x﹣ =0,极坐标方程为ρ2﹣ρcosθ﹣ =0
直线l的极坐标方程为4ρsin(θ+ )+ =0,即4ρ( sinθ+ cosθ)+ =0,
即2 x+2y+ =0.
联立方程可得交点坐标(﹣ ,0),(0,﹣ ),
极坐标为( ,π),( , )
(2)解:设P(1+2cosα, sinα),
则点P到直线l的距离d= (tanθ=2),
∴点P到直线l的距离的最大值为
【解析】(1)利用极坐标和直角坐标的互化公式把直线l的极坐标方程化为直角坐标方程.利用同角三角函数的基本关系消去α,把曲线的参数方程化为直角坐标方程,再求出交点的极坐标;(2)设点P(1+2cosα, sinα),求得点P到直线l的距离,由此求得d的最大值.
科目:高中数学 来源: 题型:
【题目】长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.求异面直线A1E与GF所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是( )
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线与圆 相交于不同的两点.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com