精英家教网 > 高中数学 > 题目详情

【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:

分组(岁)

频数

[25,30)

x

[30,35)

y

[35,40)

35

[40,45)

30

[45,50]

10

合计

100

(Ⅰ)求频率分布表中x、y的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人重随机抽取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.

【答案】解:(I)由图知,P(25≤x<30)=0.01×5=0.05,故x=100×0.05=5; P(30≤x<35)=1﹣(0.05+0.35+0.3+0.1)=1﹣0.8=0.2
故y=100×0.2=20,
= =0.04
(II)∵各层之间的比为5:20:35:30:10=1:4:7:6:2,且共抽取20人,
∴年龄在[35,40)内层抽取的人数为7人.
X可取0,1,2,P(X=k)= ,可得P(X=0)= ,P(X=1)= ,P(X=2)=
故X的分布列为:

X

0

1

2

P

故E(X)=0× +1× +2× =
【解析】(I)利用频率分布直方图的性质即可得出.(II)各层之间的比为5:20:35:30:10=1:4:7:6:2,且共抽取20人,可得年龄在[35,40)内层抽取的人数为7人.X可取0,1,2,P(X=k)= ,即可得出.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息,以及对离散型随机变量及其分布列的理解,了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数 的图象向左平移 个周期后,所得图象对应的函数g(x)的一个单调增区间为(
A.[0,π]
B.
C.
D.[﹣π,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定命题p:“若a2017>﹣1,则a>﹣1”;命题q:“x∈R,x2tanx2>0”,则下列命题中,真命题的是(
A.p∨q
B.(¬p)∨q
C.(¬p)∧q
D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是求样本x1、x2、…x10平均数 的程序框图,图中空白框中应填入的内容为(
A.S=S+xn
B.S=S+
C.S=S+n
D.S=S+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.
(1)求a+b+c的值;
(2)求 (a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 满足 ,且a1=3. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,其左、右焦点分别为F1 , F2 , 离心率为 ,点R的坐标为 ,又点F2在线段RF1的中垂线上.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点分别为A1 , A2 , 点P在直线 上(点P不在x轴上),直线PA1 , PA2与椭圆C分别交于不同的两点M,N,线段MN的中点为Q,若|MN|=λ|A1Q|,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l1:y=tanαx(0≤a<π,α ),抛物线C: (t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系 (Ⅰ)求直线l1和抛物线C的极坐标方程;
(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2 , l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

同步练习册答案