精英家教网 > 高中数学 > 题目详情

奇函数数学公式,且当x>0时,f(x)有最小值数学公式,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设数学公式,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

解(1)
∵是奇函数;

又可知和不能同时为0
故b=0
a+b+1=3c+3d,


当x>0时,f(x)有最大值


(2)∵g(x)=2x2+1
∴an+12=2an2+1?an+12+1=2(an2+1)
∴{an2+1}为等比数列,其首项为a12+1=2,公比为2
∴an2+1=(a12+1)•2n-1=2n
(3)由题

假设存在正实数m,对任意n∈N*,使bn•bn+1>0恒成立.
∵b1=m>0
∴bn>0恒成立.




取n>1+b12,即n>m2+1时,有bn<0与bn>0矛盾.
因此,不存在正实数m,使bn•bn+1>0对n∈N*恒成立.
分析:(1)根据f(1)=3,以及f(x)为奇函数可求出b的值,然后根据当x>0时,f(x)有最小值,可求出c的值,从而求出函数的解析式;
(2)根据an+12=g(an)可证得{an2+1}为等比数列,其首项为a12+1=2,公比为2,从而求出数列{an}的通项公式;
(3)假设存在正实数m,对任意n∈N*,使bn•bn+1>0恒成立,然后根据放缩法可得,取n>1+b12,即n>m2+1时,有bn<0与bn>0矛盾,从而得到结论.
点评:本题主要考查了函数的解析式,以及函数的奇偶性和恒成立问题,同时考查了数列的综合运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在实数集R上的奇函数,且当x>0时,f(x)+x•f′(x)>0(其中f′(x)是f(x)的导函数)恒成立.若a=(ln
1
e2
)•f(ln
1
e2
)
b=
2
•f(
2
)
,c=lg5•f(lg5),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2013型增函数”,则实数a的取值范围是
(-∞,
671
2
)
(-∞,
671
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,且当x>0时,f(x)=2+lnx.
(1)求f(x)在R上的解析式;
(2)求满足f(x)=0的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是R上的奇函数,且当x>0时,f(x)+xf′(x)>0,若f(3)=5,且当x∈(-∞,-a)∪(a,+∞),a>0时,不等式|f(x)|>
15|x|
恒成立,则a的取值范围是
a≥3
a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且当x<0时,f(x)=1+2x
(1)求其在R上的解析式;
(2)画出函数f(x)的图象,并根据图象写出函数的单调区间.

查看答案和解析>>

同步练习册答案