精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*
(I)证明数列{an+1}是等比数列;
(II)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2-13n的大小.
分析:(I)根据an+1=Sn+1-Sn,得到n≥2时an+1和an关系式即an+1=2an+1,两边同加1得到an+1+1=2(an+1),最后验证n=1时等式也成立,进而证明数列{an+1}是等比数列.
(II)通过(I){an+1}的首项为5公比为2求得数列an+1的通项公式,进而求得an的通项公式,代入f(x)进而求出f'(x),再求得f‘(1),进而求得2f‘(1).要比较2f'(1)与23n2-13n的大小,只需看2f′(1)-(23n2-13n)于0的关系.
解答:解:(I)由已知Sn+1=2Sn+n+5(n∈N*),
可得n≥2,Sn=2Sn-1+n+4两式相减得Sn+1-Sn=2(Sn-Sn-1)+1即an+1=2an+1
从而an+1+1=2(an+1)
当n=1时S2=2S1+1+5所以a2+a1=2a1+6又a1=5所以a2=11
从而a2+1=2(a1+1)
故总有an+1+1=2(an+1),n∈N*又a1=5,a1+1≠0
从而
an+1+1
an+1
=2即数列{an+1}是等比数列;
(II)由(I)知an=3×2n-1
因为f(x)=a1x+a2x2++anxn所以f′(x)=a1+2a2x++nanxn-1
从而f′(1)=a1+2a2++nan=(3×2-1)+2(3×22-1)++n(3×2n-1)
=3(2+2×22++n×2n)-(1+2++n)=3(n-1)•2n+1-
n(n+1)
2
+6.
由上2f′(1)-(23n2-13n)=12(n-1)•2n-12(2n2-n-1)
=12(n-1)•2n-12(n-1)(2n+1)
=12(n-1)[2n-(2n+1)]①
当n=1时,①式=0所以2f'(1)=23n2-13n;
当n=2时,①式=-12<0所以2f'(1)<23n2-13n
当n≥3时,n-1>0又2n=(1+1)n=Cn0+Cn1++Cnn-1+Cnn≥2n+2>2n+1
所以(n-1)[2n-(2n+1)]>0即①>0从而2f′(1)>23n2-13n.
点评:本题主要考查了数列中等比关系的确定.往往可以通过
an+1
an
=q
,q为常数的形式来确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2,时,an总是3Sn-4与2-
52
Sn-1
的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知数列{an}的首项a1=1,若?n∈N*,an•an+1=-2,则an=
1,n是正奇数
-2,n是正偶数
1,n是正奇数
-2,n是正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=Sn•Sn-1(n≥2).
(1)求证:数列{
1Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
2
3
an+1=
2an
an+1
,n∈N+
(Ⅰ)设bn=
1
an
-1
证明:数列{bn}是等比数列;
(Ⅱ)数列{
n
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案