精英家教网 > 高中数学 > 题目详情

【题目】日照一中为了落实阳光运动一小时活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形AMPN健身场地.如图,点MAC上,点NAB上,且P点在斜边BC上,已知∠ACB=60°|AC|=30米,|AM|=x米,x[10,20].

(1)试用x表示S,并求S的取值范围;

(2)若在矩形AMPN以外(阴影部分)铺上草坪.已知:矩形AMPN健身场地每平方米的造价为,草坪的每平方米的造价为(k为正常数).设总造价T关于S的函数为T=f(S),试问:如何选取|AM|的长,才能使总造价T最低.

【答案】(1)(2)12米或18

【解析】

试题(1)根据题意,分析可得,欲求健身场地占地面积,只须求出图中矩形的面积即可,再结合矩形的面积计算公式求出它们的面积即得,最后再根据二次函数的性质得出其范围;

2)对于(1)所列不等式,考虑到其中两项之积为定值,可利用基本不等式求它的最大值,从而解决问题.

解:(1)在Rt△PMC中,显然|MC|=30﹣x∠PCM=60°

∴|PM|=|MC|tan∠PCM=30﹣x),…2

矩形AMPN的面积S=|PM||MC|=x30﹣x),x∈[1020]…4

于是200≤S≤225为所求.…6

2)矩形AMPN健身场地造价T1=37k…7

△ABC的面积为450,即草坪造价T2=S…8

由总造价T=T1+T2∴T=25k+),200≤S≤225…10

∴T=25k+),200≤S≤225

+≥12…11

当且仅当=S=216时等号成立,…12

此时x30﹣x=216,解得x=12x=18

所以选取|AM|的长为12米或18米时总造价T最低.…14分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的两个焦点为P为该双曲线上一点,满足P到坐标原点O的距离为d,且,则________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自然状态下的鱼类是一种可再生资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.表示某鱼群在第年年初的总量且.不考虑其他因素,设在第年内鱼群的繁殖量及捕捞量都与成正比,死亡量与成正比,这些比例系数依次为正常数

1)求的关系式

2)若每年年初鱼群的总量保持不变,求所应满足的条件

3)设,为保证对任意,都有,则捕捞强度的最大允许值是多少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在常数,对任意都有,则称函数T倍周期函数.

1)判断是否是T倍周期函数,并说明理由;

2)证明T倍周期函数,且T的值是唯一的;

3)若2倍周期函数,表示的前n项和,,若恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系动点到定点的距离与它到直线的距离相等.

1)求动点的轨迹的方程;

2)设动直线与曲线相切于点与直线相交于点

证明:以为直径的圆恒过轴上某定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点处的切线的斜率分别是,规定叫曲线在点与点之间的“弯曲度”,给出以下命题:

1)函数图象上两点的横坐标分别为12,则

2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

3)设点是抛物线,上不同的两点,则

4)设曲线上不同两点,且,若恒成立,则实数的取值范围是

以上正确命题的序号为__(写出所有正确的)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧棱底面,(

1)求证:平面

2)若直线与平面所成角的正弦值为,求的值;

3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,对于点,定义变换:将点变换为点,使得其中.这样变换就将坐标系内的曲线变换为坐标系内的曲线.则四个函数,,,在坐标系内的图象,变换为坐标系内的四条曲线(如图)依次是

A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

同步练习册答案