精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若的一个极值点,求的值;

2)讨论的单调区间;

3)当时,求函数的最大值.

【答案】1;(2)分类讨论,详见解析(3)分类讨论,详见解析.

【解析】

1)对进行求导,将代入,令,得;(2)对导函数进行因式分解得到,故而结合函数定义域,分别对来讨论函数的单调区间;(3)结合第二问结论,对导函数的零根进行讨论,分别讨论时函数的最大值即可.

1)∵的一个极值点

,经检验满足题意

2的定义域为

时,

上单调递增.

②若,则由

∴当时,,当时,

上单调递增,在上单调递减.

3)由(2)知 ,单调递增,在单调递减

单调递增

∴当时,有最大值

单调递增,在单调递减.

∴当时,有最大值

③当时,单调递减,

∴当时,有最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是

A. 56 B. 60 C. 120 D. 140

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对某物质的繁殖情况进行调查时发现,1月、2月、3月该物质的数量分别为359个单位.为了预测以后各月该物质的数量,甲选择了模型,乙选择了模型,其中y为该物质的数量,x为月份数,abcpqr为常数.

1)若5月份检测到该物质有32个单位,你认为哪个模型较好,请说明理由.

2)对于乙选择的模型,试分别计算4月、7月和10月该物质的当月增长量,从计算结果中你对增长速度的体会是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某地有三家工厂,分别位于矩形ABCD的顶点AB以及CD的中点P处,已知AB=20kmCB=10km,为了处理三家工厂的污水,现要在矩形ABCD(含边界),且与AB等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为km

(I),将表示成的函数关系式;

(II)确定污水处理厂的位置,使三条排污管道的总长度最短,并求出最短值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图()所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图()所示.

(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;

(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆交于两点

1求线的垂直平分线的方程

2,求的值

32的条件下,求过点的圆的切线方程。

查看答案和解析>>

同步练习册答案