精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若的极值点,试研究函数的单调性,并求的极值;

(2)若上恒成立,求实数的取值范围.

【答案】(1)详见解析;(2).

【解析】试题分析:1)现求,再由的极值点,求得的值,最后根据得到函数的单调性和极值;

2)将不等式的恒成立问题转化为求曲线的最小值问题,对分类讨论,即可确定实数的取值范围.

试题解析:

(1)函数,定义域为,则

的极值点,则,即.

.

,则,令,则

上单调递增,在上单调递减,

处取得极小值,极小值为.

(2)若上恒成立,即.

由(1)知

(i)当时,即上恒成立,即上单调递减,

,得.

(ii)当时, 时,

时,

,即时, 上恒成立,

上单调递减,∴,即恒成立,

,即时, 时, 时, .

上单调递减,在上单调递增,

,得.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面为矩形,ABBC=1,EF分别是ABPC的中点,DEPA.

(1)求证:EF∥平面PAD

(2)求证:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式的解集为,若,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+1)e-x(e为自然对数的底数).

(1)求函数f(x)的单调区间;

(2)设函数φ(x)=xf(x)+tf′(x)+e-x,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体中, ,点 分别为 的中点,过点的平面与平面平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图中画出这个几何图形(说明画法,不需要说明理由);

(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已经函数的定义域为,设

(1)试确定的取值范围,使得函数上为单调函数

(2)求证

(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.(解答过程可参考使用以下数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把2支相同的晨光签字笔,3支相同英雄钢笔全部分给4名优秀学生,每名学生至少1支,则不同的分法有( )

A. 24种 B. 28种 C. 32种 D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手再从全校征集出3位志愿者分别与进行一场技术对抗赛根据以往经验 与这三位志愿者进行比赛一场获胜的概率分别为且各场输赢互不影响.

(1)求甲恰好获胜两场的概率;

(2)求甲获胜场数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海产品经销商调查发现,该海产品每售出吨可获利万元,每积压吨则亏损万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.

(1)请补齐上的频率分布直方图,并依据该图估计年需求量的平均数;

(2)今年该经销商欲进货吨,以(单位:吨, )表示今年的年需求量,以(单位:万元)表示今年销售的利润,试将表示为的函数解析式;并求今年的年利润不少于万元的概率.

查看答案和解析>>

同步练习册答案