精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a,b,c,且数学公式,若b=2a,求a,b的值.

解:(Ⅰ)
则f(x)的最小值是-2,最小正周期是;(7分)
(Ⅱ),则

由余弦定理,得,即3=a2+b2-ab,
又∵b=2a解得a=1,b=2.(14分)
分析:(Ⅰ)利用三角恒等变换公式对函数的解析式进行化简,再根据函数的性质求最小值与用求周期的公式求周期.
(Ⅱ)利用三角恒等变换公式对函数的解析式进行化简求角,再利用余弦定理建立方程与b=2a联立求出a,b的值.
点评:本题考查余弦定理,解本题的关键是利用余弦定理建立关于参数的方程,本题中涉及到了三角恒等变换,求三角函数的最小值,周期,知识性较强,解题时要注意准确利用知识变形求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案